How to measure mast seeding?

Author:

Bogdziewicz Michał12ORCID,Calama Rafael3ORCID,Courbaud Benoit2,Espelta Josep M.4ORCID,Hacket‐Pain Andrew5ORCID,Journé Valentin1ORCID,Kunstler Georges2,Steele Michael6,Qiu Tong7ORCID,Zywiec Magdalena8,Clark James S.29ORCID

Affiliation:

1. Forest Biology Centre, Institute of Environmental Biology, Faculty of Biology Adam Mickiewicz University Uniwersytetu Poznanskiego 6 Poznan 61‐614 Poland

2. Institut National de Recherche Pour Agriculture, Alimentation et Environnement (IN23‐RAE), Laboratoire EcoSystemes et Societes En Montagne (LESSEM) Université Grenoble Alpes St Martin‐d'Hères 38402 France

3. Instituto de Ciencias Forestales (INIA‐CSIC) Madrid 28040 Spain

4. Centre de Recerca Ecologica i Aplicacions Forestals (CREAF) Bellaterra Catalonia 08193 Spain

5. Department of Geography and Planning, School of Environmental Sciences University of Liverpool Liverpool UK

6. Department of Biology Wilkes University 84 West South Street Wilkes‐Barre PA 18766 USA

7. Department of Ecosystem Science and Management Pennsylvania State University University Park State College PA 16802 USA

8. W. Szafer Institute of Botany, Polish Academy of Sciences Lubicz 46 Kraków 31‐512 Poland

9. Nicholas School of the Environment Duke University Durham NC 27708 USA

Abstract

SummaryThe periodic production of large seed crops, or masting, is a widespread phenomenon in perennial plants. This behavior can enhance the reproductive efficiency of plants, leading to increased fitness, and produce ripple effects on food webs. While variability from year to year is a defining characteristic of masting, the methods used to quantify this variability are highly debated. The commonly used coefficient of variation lacks the ability to account for the serial dependence in mast data and can be influenced by zeros, making it a less suitable choice for various applications based on individual‐level observations, such as phenotypic selection, heritability, and climate change studies, which rely on individual‐plant‐level datasets that often contain numerous zeros. To address these limitations, we present three case studies and introduce volatility and periodicity, which account for the variance in the frequency domain by emphasizing the significance of long intervals in masting. By utilizing examples of Sorbus aucuparia, Pinus pinea, Quercus robur, Quercus pubescens, and Fagus sylvatica, we demonstrate how volatility captures the effects of variance at both high and low frequencies, even in the presence of zeros, leading to improved ecological interpretations of the results. The growing availability of long‐term, individual‐plant datasets promises significant advancements in the field, but requires appropriate tools for analysis, which the new metrics provide.

Funder

Narodowa Agencja Wymiany Akademickiej

Narodowe Centrum Nauki

Publisher

Wiley

Subject

Plant Science,Physiology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3