The sphingosine 1‐phosphate analogue, FTY720, modulates the lipidomic signature of the mouse hippocampus

Author:

Magalhães Daniela M.123ORCID,Stewart Nicolas A.3,Mampay Myrthe3,Rolle Sara O.4,Hall Chloe M.35,Moeendarbary Emad56,Flint Melanie S.3,Sebastião Ana M.12,Valente Cláudia A.12,Dymond Marcus K.3,Sheridan Graham K.7ORCID

Affiliation:

1. Instituto de Farmacologia e Neurociências, Faculdade de Medicina Universidade de Lisboa Lisboa Portugal

2. Instituto de Medicina Molecular João Lobo Antunes Lisboa Portugal

3. School of Applied Sciences University of Brighton Brighton UK

4. Green Templeton College, University of Oxford Oxford UK

5. Department of Mechanical Engineering University College London London UK

6. 199 Biotechnologies Ltd London UK

7. School of Life Sciences University of Nottingham Nottingham UK

Abstract

AbstractThe small‐molecule drug, FTY720 (fingolimod), is a synthetic sphingosine 1‐phosphate (S1P) analogue currently used to treat relapsing–remitting multiple sclerosis in both adults and children. FTY720 can cross the blood–brain barrier (BBB) and, over time, accumulate in lipid‐rich areas of the central nervous system (CNS) by incorporating into phospholipid membranes. FTY720 has been shown to enhance cell membrane fluidity, which can modulate the functions of glial cells and neuronal populations involved in regulating behaviour. Moreover, direct modulation of S1P receptor‐mediated lipid signalling by FTY720 can impact homeostatic CNS physiology, including neurotransmitter release probability, the biophysical properties of synaptic membranes, ion channel and transmembrane receptor kinetics, and synaptic plasticity mechanisms. The aim of this study was to investigate how chronic FTY720 treatment alters the lipid composition of CNS tissue in adolescent mice at a key stage of brain maturation. We focused on the hippocampus, a brain region known to be important for learning, memory, and the processing of sensory and emotional stimuli. Using mass spectrometry‐based lipidomics, we discovered that FTY720 increases the fatty acid chain length of hydroxy‐phosphatidylcholine (PCOH) lipids in the mouse hippocampus. It also decreases PCOH monounsaturated fatty acids (MUFAs) and increases PCOH polyunsaturated fatty acids (PUFAs). A total of 99 lipid species were up‐regulated in the mouse hippocampus following 3 weeks of oral FTY720 exposure, whereas only 3 lipid species were down‐regulated. FTY720 also modulated anxiety‐like behaviours in young mice but did not affect spatial learning or memory formation. Our study presents a comprehensive overview of the lipid classes and lipid species that are altered in the hippocampus following chronic FTY720 exposure and provides novel insight into cellular and molecular mechanisms that may underlie the therapeutic or adverse effects of FTY720 in the central nervous system.image

Funder

Fundação para a Ciência e a Tecnologia

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3