Affiliation:
1. Department of Mathematics & Statistics Dalhousie University Halifax Nova Scotia Canada
2. Department of Fisheries, Wildlife, and Conservation Biology University of Minnesota Minneapolis Minnesota USA
3. Department of Biology Concordia University Montreal Quebec Canada
Abstract
Abstract
Step selection functions (SSFs) are used to jointly describe animal movement patterns and habitat preferences. Recent work has extended this framework to model inter‐individual differences, account for unexplained structure in animals' space use and capture temporally varying patterns of movement and habitat selection.
In this paper, we formulate SSFs with penalised smooths (similar to generalised additive models) to unify new and existing extensions, and conveniently implement the models in the popular, open‐source mgcv R package.
We explore non‐linear patterns of movement and habitat selection, and use the equivalence between penalised smoothing splines and random effects to implement individual‐level and spatial random effects. This framework can also be used to fit varying‐coefficient models to account for temporally or spatially heterogeneous patterns of selection (e.g. resulting from behavioural variation), or any other non‐linear interactions between drivers of the animal's movement decisions.
We provide the necessary technical details to understand several key special cases of smooths and their implementation in mgcv, showcase the ecological relevance using two illustrative examples and provide R code to facilitate the adoption of these methods. This paper offers a broad overview of how smooth effects can be applied to increase the flexibility and biological realism of SSFs.
Funder
National Aeronautics and Space Administration
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献