Integrated trophic position as a proxy for food‐web complexity

Author:

Ishikawa Naoto F.1ORCID,Takashima Ayaka2,Maruoka Hirokazu3,Kondoh Michio4

Affiliation:

1. Biogeochemistry Research Center Japan Agency for Marine‐Earth Science and Technology Yokosuka Japan

2. Graduate School of Science and Technology Ryukoku University Otsu Japan

3. Research Center for Bioscience and Nanoscience Japan Agency for Marine‐Earth Science and Technology Yokosuka Japan

4. Graduate School of Life Sciences Tohoku University Sendai Japan

Abstract

Abstract There are two distinct approaches to describing the distributions of biomass and species in food webs: one to consider them as discrete trophic levels (TLs); and the other to consider them as continuous trophic positions (TPs). Bridging the gap between these two perspectives presents a nontrivial challenge in integrating biodiversity and food‐web structure. Food network unfolding (FNU) is a technique used to bridge this gap by partitioning the biomass of species into integer TLs to compute three complexity indices, namely vertical (DV), horizontal (DH) and range (DR) diversity (D indices), through decomposition of Shannon's index H′. Using FNU, the food web (a network of species with unique TPs) is converted to a linear food chain (a biomass distribution at discrete TLs). This enables us to expect that the unfolded biomass within species decreases exponentially as the TL increases. Under this condition, the mean TL value in unfolded food chains is hypothesized to have an exponential relationship with the vertical diversity, DV. To explore this, we implemented FNU and calculated D indices for food webs publicly available at EcoBase (n = 158) and calculated the integrated TP (iTP), defined as the biomass‐weighted average TP of a given food web. The iTP corresponds to the mean TL in unfolded food chains and can be empirically measured through compound‐specific isotope analysis of amino acids (CSIA‐AA). Although our analysis is biased towards marine ecosystems, we revealed an exponential relationship between iTP and DV, suggesting that iTP can serve as a measurable proxy for DV. Furthermore, we found a positive correlation between the iTP observed in the total communities (total iTP) and the iTPs of partial communities consisting only of species with 2.0 ≤ TP < 3.0 (partial iTP; r2 = 0.48), suggesting that DV can be predicted using partial iTP. Our findings suggest that the net effect of species diversity, excluding the effect of biomass (corresponding to H′ − DV), on food‐web complexity can be revealed by combining CSIA‐AA with biodiversity analysis (e.g. environmental DNA).

Funder

Japan Society for the Promotion of Science

Publisher

Wiley

Subject

Ecological Modeling,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3