Exploring the potential of rock surface luminescence from glacial sediments: dating and transport history

Author:

Rades Eike F.12ORCID,Sohbati Reza3,Alexanderson Helena4,Jain Mayank3,Murray Andrew S.12ORCID

Affiliation:

1. Nordic Laboratory for Luminescence Dating, Department of Geoscience Aarhus University Høegh‐Guldbergs Gade 2 DK‐8000 Aarhus C Denmark

2. DTU Physics DTU Risø Campus Roskilde DK‐4000 Denmark

3. Department of Physics Technical University of Denmark DTU Risø Campus Roskilde DK‐4000 Denmark

4. Department of Geology Lund University Sölvegatan 12 22362 Lund Sweden

Abstract

The dating of moraine deposits can present challenges to standard geochronological methods; terrestrial cosmogenic nuclide (TCN), sediment luminescence and radiocarbon dating may suffer from problems of incomplete resetting (by inheritance, intermittent cover/exposure, transport under unfavourable conditions) and/or a lack of suitable (organic) material. Rock surface luminescence burial dating (RSLBD) offers an alternative approach with considerable potential in dating moraines. In RSLBD, large cobbles/boulders are targeted, rather than smaller grains usually used in luminescence dating. The age limit of RSLBD is much higher than that of radiocarbon dating, and rocks are much more readily available than organic material. In contrast to TCN dating, the effect of exposure prior to deposition can be measured. In this study, we sampled a broad selection of primarily granitic boulders of various sizes and shapes (e.g. different degrees of roundness and sphericity) from the Vimmerby Moraine, a prominent and accessible feature in southern Sweden dated using TCN to 14.4±0.9 ka. Our study was designed to test whether morphological characteristics can be used to discriminate in favour of the most light‐exposed boulders and minimize measurements of non‐exposed boulders. As expected, not all RSLBD ages can be attributed to the same depositional event, but the majority of the resulting ages provide a mean age of 13.0±1.5 ka, consistent with the cosmogenic nuclide dating of the Vimmerby Moraine. Despite the apparently successful TCN study, the luminescence–depth profiles measured in the buried surfaces of the sampled clasts indicate that >50% of these moraine boulders were exposed to light (and cosmic radiation) before final deposition, implying some (presumably small) TCN inheritance; seven of the 16 boulders identified as light exposed were sufficiently bleached to be useful for RSLBD. These results and their implications in regard to transport and deposition of the sampled cobbles are critically discussed and evaluated.

Publisher

Wiley

Subject

Geology,Archeology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3