Impact of non‐thermal plasma generated using air and nitrogen on functional properties of milk protein dispersions

Author:

Modupalli Nikitha1,Rahman Md Mahfuzur1

Affiliation:

1. Department of Food Science University of Arkansas Division of Agriculture Fayetteville Arkansas USA

Abstract

AbstractThis study focuses on improving the functionalities of milk protein concentrate (MPC) using a nonthermal plasma jet and plasma‐activated water (PAW) with atmospheric air and nitrogen as source gases. The 5% and 10% MPC dispersions were directly treated with a plasma jet, and PAW was used to make the MPC dispersions. The dispersions were analyzed for changes in protein structure and functional properties. The treatment altered the secondary structure of MPC protein structure by increasing β‐components and changing the order of random coils. The solubility of the PAW‐treated 5% protein dispersions doubled due to plasma‐induced modification of hydrophilic and covalent bonds of the protein, but this increase was not significant for the 10% dispersions due to less hydration. Emulsifying capacity increases by around 7% for plasma jet and PAW with air, owing to hydrophobicity on the particle surface. The gelation capacity and heat coagulation time rise by almost twice; however, foaming capacity decreases, indicating protein structural modifications and aggregations caused by plasma exposure. The viscosity of the 5% dispersions decreased due to high solubility, while that of the 10% dispersions increased due to less hydration. Principle component analysis was used to correlate the change in functionality with different operating parameters. In conclusion, this study illustrates that the functional properties of MPC can be significantly modified through plasma treatment. The observed changes depend on several factors, including the mode of plasma exposure, the source gas used to generate the plasma, and the concentration of the protein solution.Practical applicationsMilk protein concentrate (MPC) is a promising ingredient in food products such as cheese, cultured dairy items, nutritional goods, infant milk formulas, ice cream, dairy‐based drinks, sports beverages, and a variety of health‐focused products. However, the application is profoundly hindered due to its poor solubility and solubility‐related functional properties. MPC powders lose functionalities during manufacturing and gradually lose them again during processing and storage. This study explores the potential of non‐thermal plasma to improve the functional properties of proteins. This study explores the potential of two different discharges: plasma jet and plasma‐activated water (PAW), using atmospheric air and nitrogen as source gases. The findings of this study would also help to understand the types of plasma discharge (jet vs PAW) and types of sources of gases that can be used in industrial applications. Some optimization parameters of this study can be used for scaling up the plasma processing of milk or dairy products. In addition, PAW is being very well studied to improve food safety, and this study would provide information on the physicochemical properties of MPC. Therefore, it would also help to understand how to apply non‐thermal plasma to achieve both microbial and physical effects.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3