Effect of Bone Cement Thickness on the Risk of Scalded Skin in Joint Surgery

Author:

Li Binglong12,Han Kaifei12,Yu Yang12,He Junyi3,Sun Houyi1,Lu Qunshan1,Li Lei1,Zheng Tong1,Zhang Baoqing1,Liu Peilai1ORCID

Affiliation:

1. Department of Orthopedics Qilu Hospital of Shandong University Jinan China

2. Cheeloo College of Medicine Shandong University Jinan China

3. Department of Pathology Qilu Hospital of Shandong University Jinan China

Abstract

ObjectiveBone cement releases a large amount of heat as it polymerizes. Skin burns caused by discarded bone cement are not well understood during arthroplasty. It is important to study the correlates and mechanisms of scalding and to accurately evaluate the severity of burns to guide treatment decisions.MethodsStandardized burns were created in eight anesthetized rabbits using different thicknesses of bone cement. Bone cement was uniformly stirred to make thicknesses of 1 mm, 4 mm, 8 mm, 12 mm, 16 mm, and 20 mm and a 20 × 40 mm cuboid. Bone cement samples were then placed on the back of a rabbit, and the temperature changes were recorded with an industrial digital thermometer. One hour later, the appearance of scalded skin was observed, and the rabbits were euthanized. The scalded parts were cut to make pathological sections and stained with HE, and the differences in the depth of the scalded skin caused by different thicknesses of bone cement were observed under a light microscope.ResultsDamage caused by 1 mm‐, 4 mm‐, 8 mm‐, 12 mm‐, 16 mm‐, and 20 mm‐thick bone cement samples mainly involved the epidermis, the papillary dermis, the reticular dermis layer, and the full thickness of the skin and the subcutaneous tissue. The maximum temperature of 1 mm, 4 mm, 8 mm, and 12 mm bone cementation had a statistically significant difference (p < 0.001), while there was no significant difference between 12 mm, 16 mm, and 20 mm samples (p = 0.856). The time to severe scalding with bone cement at temperatures above 70°C was significantly different between different thicknesses (p < 0.001).ConclusionThe heat released by different thicknesses of bone cement leads to different maximum temperatures and the duration of severe burns, resulting in different degrees of skin burns. Attention should be paid to discarded bone cement to prevent this potential complication in knee arthroplasty.

Publisher

Wiley

Subject

Orthopedics and Sports Medicine,Surgery

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3