Colour gamut analysis of low‐cost dye‐sensitised solar cells using natural dyes

Author:

Haghighi Sanaz Shirahmad1,Jafari Razieh1ORCID,Hosseinnezhad Mozhgan2ORCID

Affiliation:

1. Department of Colour Physics Institute for Colour Science and Technology Tehran Iran

2. Department of Organic Colourants Institute for Colour Science and Technology Tehran Iran

Abstract

AbstractDue to the increasing effects of greenhouse gases and environmental pollution, the need for new clean energies like solar energy attracts much attention. Although the characteristics and the efficiency of green photovoltaic devices have been researched, the colour gamut achievable from those devices has not been studied. This study investigates the colour gamut of low‐cost dye‐sensitised solar cells (DSSCs). To do this, 14 natural dye extracts were obtained from herbal resources including dragon fruit, blueberry, mango, radish, yellow rose, red cabbage, sour pomegranate, beetroot, olive, green cabbage pepper, eggplant, parsley, bramble and cherry, and employed as photosensitiser in solar cells. Then, the colorimetric attributes of the photosensitisers were studied in three‐dimensional (3D)‐colour space, that is, CIELab, CIELCH and CIE1931 chromaticity diagram. Additionally, the convex hull method was employed to determine the colour gamut boundary and the corresponding colour gamut volume. Results showed that the majority of samples benefited from approximately 3°–82° of hue angle in a*b* diagram of CIELab colour space and showed the yellowish to reddish tint effects. In CIELCH colour order system, cherry and parsley showed the lowest and highest lightness attributes while the chroma property of samples varied from minimum 1.2 for eggplant to maximum 60.2 for the dragon fruit. Moreover, the results of using the convex hull method showed the volume of 7.73 × 104 that is bounded by the colour gamut of 3D colour points over the CIELab colour space.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3