Plant–mycorrhizal associations may explain the latitudinal gradient of plant community assembly

Author:

Shinohara Naoto1ORCID,Kobayashi Yuta2ORCID,Nishizawa Keita3,Kadowaki Kohmei45ORCID,Yamawo Akira1ORCID

Affiliation:

1. Center for Ecological Research, Kyoto University Otsu Shiga Japan

2. Field Science Center, Faculty of Agriculture, Tokyo University of Agriculture and Technology Fuchu Japan

3. Research Center for Advanced Science and Technology, The University of Tokyo Meguro Japan

4. Field Science Education and Research Center, Kyoto University Kyoto Japan

5. The Hakubi Center for Advanced Research, Graduate School of Agriculture, Kyoto University Kyoto Japan

Abstract

Biogeographical variation in community assembly processes forms the basis of the latitudinal gradient of biodiversity by driving β‐diversity. Classical studies on community assembly predict environmental filtering affecting β‐diversity more strongly at higher latitudes, where productivity is lower and abiotic stress is stronger. Contrary to this prediction, recent evidence indicates that plant community composition at higher latitudes exhibits more spatially clustered distributions independently of background environments, suggesting the importance of spatial processes, such as priority effects. In this study, we propose a hypothesis that resolves this paradox by considering plant–soil feedback and biogeographic variations in the dominant mycorrhizal type: we predict that the increasing prevalence of ectomycorrhizal (EcM) trees with latitude contributes to the spatially clustered distribution of plants, as EcM trees tend to exhibit positive plant–soil feedback. We analyzed a large‐scale standardized dataset of Japanese forests covering a latitudinal gradient of >10° and found that 1) the proportion of EcM trees was higher at higher latitudes, and 2) EcM tree‐rich communities exhibited more spatially clustered distributions likely due to positive plant–soil feedback. Consequently, 3) tree species composition at higher latitudes was better explained by spatial variables suggesting the importance of priority effects. Consistent with the predictions of the plant–soil feedback theory, these patterns were more pronounced in understory than in canopy communities. Taken together, our results lend support to our hypothesis that biogeographic variation in tree community assembly patterns is defined by mycorrhizal types and plant–soil feedback, thereby resolving a paradox in the latitudinal gradient of plant community assembly. Our work highlights that plant mycorrhizal type underlies the determinants of β‐diversity which is a critical component of the latitudinal gradient of diversity.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3