Rapid detection of Fusarium fujikuroi in rice seeds and soaking water samples based on recombinase polymerase amplification‐lateral flow dipstick

Author:

Zhang Fuyu1,Jin Chenyi1,Hu Renze1,Li Zhaomeng1,Hu Shuodan1,Zhang Yu1ORCID,Zhang Chuanqing1ORCID

Affiliation:

1. Department of Plant Pathology, The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences Zhejiang A&F University Hangzhou China

Abstract

AbstractBakanae disease is a rice seedborne disease caused by the Fusarium (Gibberella) fujikuroi species complex (FFSC), among which F. fujikuroi is the dominant pathogen. Pathogens usually hide inside or on the surface of seeds, and infection occurs mainly at the germination stage. In this study, a method for the detection of F. fujikuroi in rice seeds and seed soaking water samples was established using recombinase polymerase amplification (RPA) technology with lateral flow device (LFD) chromatography test strips. A pair of specific primers and probes based on the cyp51c gene were screened. RPA‐LFD was used to detect 10 F. fujikuroi strains, and the results showed that all of them tested positive and there was no cross‐reaction with other Fusarium or non‐Fusarium species. The target production of the RPA‐LFD assay was obtained at 35–45°C for 8–14 min, and optimal reaction conditions of amplification at 39°C for 8 min is recommended. The sensitivity test showed that the detection limit of the RPA‐LFD test for F. fujikuroi genomic DNA in rice seeds was 100 fg/μL, and the detection limit for F. fujikuroi spores in submerged water samples was 100 spores/mL. In the assay for field samples, it successfully detected F. fujikuroi carried in the seeds of three out of five rice varieties. In addition, the whole RPA‐LFD assay can specifically detect F. fujikuroi within 30 min. This method is expected to become an early field monitoring tool for rice bakanae disease.

Publisher

Wiley

Subject

Horticulture,Plant Science,Genetics,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3