EGR1 and EGR2 positively regulate plant ABA signaling by modulating the phosphorylation of SnRK2.2

Author:

Li Chuanling12,Li Xuetong1,Deng Zhiping3ORCID,Song Yuning1,Liu Xinye1,Tang Xiaohan Alex4,Li Ziye1,Zhang Ya1,Zhang Baowen1,Tang Wenqiang1ORCID,Shang Jian‐Xiu1ORCID,Sun Yu1ORCID

Affiliation:

1. Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences Hebei Normal University Shijiazhuang 050024 China

2. Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute Chinese Academy of Tropical Agricultural Sciences Zhanjiang 524091 China

3. Institute of Virology and Biotechnology Zhejiang Academy of Agricultural Sciences Hangzhou 310021 China

4. Division of Life Science The Hong Kong University of Science and Technology Kowloon Hong Kong Special Administrative Region China

Abstract

Summary During abscisic acid (ABA) signaling, reversible phosphorylation controls the activity and accumulation of class III SNF1‐RELATED PROTEIN KINASE 2s (SnRK2s). While protein phosphatases that negatively regulate SnRK2s have been identified, those that positively regulate ABA signaling through SnRK2s are less understood. In this study, Arabidopsis thaliana mutants of Clade E Growth‐Regulating 1 and 2 (EGR1/2), which belong to the protein phosphatase 2C family, exhibited reduced ABA sensitivity in terms of seed germination, cotyledon greening, and ABI5 accumulation. Conversely, overexpression increased these ABA‐induced responses. Transcriptomic data revealed that most ABA‐regulated genes in egr1 egr2 plants were expressed at reduced levels compared with those in Col‐0 after ABA treatment. Abscisic acid up‐regulated EGR1/2, which interact directly with SnRK2.2 through its C‐terminal domain I. Genetic analysis demonstrated that EGR1/2 function through SnRK2.2 during ABA response. Furthermore, SnRK2.2 de‐phosphorylation by EGR1/2 was identified at serine 31 within the ATP‐binding pocket. A phospho‐mimic mutation confirmed that phosphorylation at serine 31 inhibited SnRK2.2 activity and reduced ABA responsiveness in plants. Our findings highlight the positive role of EGR1/2 in regulating ABA signaling, they reveal a new mechanism for modulating SnRK2.2 activity, and provide novel insight into how plants fine‐tune their responses to ABA.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hebei Province

Publisher

Wiley

Subject

Plant Science,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3