Multiple dimensions of biodiversity mediate effects of temperature on invertebrate herbivory in a montane grassland

Author:

Halliday Fletcher W.1ORCID,Cappelli Seraina L.12ORCID,Laine Anna‐Liisa12

Affiliation:

1. Department of Evolutionary Biology and Environmental Studies, University of Zurich Zurich Switzerland

2. Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki Finland

Abstract

Invertebrate herbivores are important and diverse, and their abundance and impacts will likely shift under climate change. Yet, past studies of invertebrate herbivory have documented highly variable responses to changing temperature, making it challenging to predict the direction and magnitude of these shifts. One explanation for these responses is that changing environmental conditions drive concurrent changes in plant communities and herbivore traits. The impacts of changing temperature on herbivory might therefore depend on how temperature combines and interacts with characteristics of plant and herbivore communities. To test this, we surveyed damage to leaves by invertebrate herbivores on 4400 plant individuals in 220 sampling plots along a 1101 m elevational gradient. Increasing temperature drove community‐level herbivory via at least three overlapping mechanisms: increasing temperature directly reduced herbivory, indirectly affected herbivory by reducing plant‐community phylogenetic diversity, and indirectly affected herbivory by altering the effects of plant‐community functional and phylogenetic diversity on herbivory. Consequently, increasing plant functional diversity reduced herbivory in colder environments while increasing plant phylogenetic diversity increased herbivory in warmer environments. Moreover, different herbivore feeding guilds varied in their response to temperature and plant community composition. These results indicate that, even along a single elevation gradient in a single year, a variety of mechanisms can concurrently drive herbivory, thereby supporting the hypothesis that a universal response of herbivory to changing environmental conditions is unlikely to exist. Instead, our results highlight the importance of considering both plant and herbivore community context to predict how climate change will alter invertebrate herbivory.

Publisher

Wiley

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3