Seasonal adaptation of Mangalica pigs in terms of muscle morphology and metabolism

Author:

Kim Sangwoo1,Nakayama Chisato1,Kondoh Daisuke2,Okazaki Tatsuki1,Yoneda Erina1,Tomita Kisaki1,Sasaki Motoki2,Muranishi Yuki13ORCID

Affiliation:

1. Department of Life and Food Science Obihiro University of Agriculture and Veterinary Medicine Obihiro Hokkaido Japan

2. Department of Veterinary Medicine Obihiro University of Agriculture and Veterinary Medicine Obihiro Hokkaido Japan

3. Laboratory for Molecular and Developmental Biology, Institute for Protein Research Osaka University Suita Osaka Japan

Abstract

AbstractThe skeletal muscle plays an important role in maintaining body temperature, which is mediated by thermogenesis and glucose or lipid metabolism. Mangalica is a native Hungarian pig that has cold tolerance and can live in grazing environments throughout the year. We evaluated the morphological and genetic aspects of Mangalica using muscle tissues to elucidate the mechanisms underlying the tolerance to seasonal effects in grazing environments. The muscle tissues in each season were analysed using morphological evaluation and electron microscopy. The cross‐sectional area of skeletal muscle cells in summer was significantly larger than that in winter. The thickness of myofibrils in summer was significantly higher than in winter. The thickness of the Z‐line in winter was significantly higher than in summer. The expression of MYH4 and GLUT4 was significantly lower in winter than in summer. The result of ATPase staining indicated significantly increase the muscle fibre ratio of type 1 in winter than that in summer. These findings indicate that the muscle fibre in Mangalica shifts from fast‐twitch to slow‐twitch fibre, and the metabolic physiology of the muscle was adapted to the cold environment. This study demonstrates that Mangalica gained tolerance to both seasonal heat and cold stresses that are caused by significant changes in ambient temperature in a year because of changes in their muscle fibre type and metabolic function. This study may contribute to elucidating the mechanism of thermogenetic adaptation in cold and heat environments among mammals.

Publisher

Wiley

Subject

General Veterinary,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3