Explaining the improving effect of dough crumb–sheet composite rolling on fresh noodle quality: From microstructure and moisture distribution perspective

Author:

Zhou Xiaoqian1,Chen Jin1,Zheng Haitao1,An Di12,Obadi Mohammed1ORCID,Xu Bin1ORCID

Affiliation:

1. School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China

2. School of Grain Science and Technology Jiangsu University of Science and Technology Zhenjiang Jiangsu China

Abstract

AbstractA new technique known as dough crumb–sheet composite rolling (DC–SCR) was used to improve the quality of fresh noodles. However, there is a dearth of theoretical investigations into the optimal selection of specific parameters for this technology, and the underlying mechanisms are not fully understood. Therefore, the effects of dough crumb addition times in DC–SCR on the texture, cooking, and eating quality of fresh noodles were first studied. Then, the underlying regulation mechanism of DC–SCR technology on fresh noodles was analyzed in terms of moisture distribution and microstructure. The study demonstrated that the most significant enhancement in the quality of fresh noodles was achieved by adding dough crumbs six times. Compared with fresh noodles made without the addition of dough crumbs, the initial hardness and chewiness of fresh noodles made by adding six times of dough crumbs increased by 25.32% and 46.82%, respectively. In contrast, the cooking time and cooking loss were reduced by 28.45% and 29.69%, respectively. This quality improvement in fresh noodles made by DC–SCR came from the microstructural differences of the gluten network between the inner and outer layers of the dough sheet. A dense structure on the outside and a loose structure on the inside could endow the fresh noodles made by DC–SCR with higher hardness, a shortened cooking time, and less cooking loss. This study would provide a theoretical and experimental basis for creating high‐quality fresh noodles.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3