Going back for the future: Incorporating Pleistocene fossil records of saiga antelope into habitat suitability models

Author:

Mills Mollie1ORCID,Schreve Danielle1,Middleton Owen2,Sandom Christopher J.2

Affiliation:

1. Department of Geography Royal Holloway University of London Egham, Surrey UK

2. School of Life Sciences University of Sussex Brighton UK

Abstract

AbstractAimMany species have suffered anthropogenic range contraction and no longer occupy all available suitable environmental conditions. This is particularly problematic for the construction of habitat suitability models (HSMs), which assume that a species' contemporary range reflects its full species–environment relationship. HSMs therefore risk underestimating suitable environment areas, and misinforming conservation decisions. Incorporating historic (centuries‐old) records partly reduces this bias, but even these records are also subject to human disturbance. We incorporated fossil records of the critically endangered saiga antelope (Saiga tatarica, L., 1776), alongside historic and current records, into current and future habitat suitability models. Saiga has experienced drastic range contraction and may have a truncated species–environment relationship. The results allowed us to test whether its current habitat provides optimal environmental conditions, or whether saiga should be considered a refugee species.LocationNorthern Hemisphere.TaxonSaiga tatarica (Bovidae, Artiodactyla).MethodsWe collated historic and fossil saiga occurrence records from published literature, museum archives and global databases. Modern occurrence records were obtained from the International Union for Conservation of Nature Red List assessment. Four bioclimatic variables were downloaded from Worldclim.org. HSMs were generated through Maxent, using the maxnet package in R. Three HSMs were developed: present only, present historic and present fossil. Each of these models was projected onto current and two future (2070) climate change scenarios.ResultsSaiga fossil records increased the predicted suitable environment area by 783% and 1416% for current and future climate projections respectively. Our results suggest the saiga is not a refugee species but occupies only a portion of its potential environmental niche. The saiga's contemporary range is predicted environmentally suitable throughout all models and projections, and therefore in situ conservation management is recommended.Main ConclusionsThis study highlights the importance of incorporating fossil records into HSMs to better understand species–environment relationships and develop more robust conservation strategies for appropriate endangered species.

Publisher

Wiley

Reference108 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3