Neurogenesis in the regenerating tail of tsinling dwarf skinks (Scincella tsinlingensis)

Author:

Yang Chun1ORCID,Sun Jinyu1,Kou Zhaoting1,Liu Bo2

Affiliation:

1. School of Life Sciences Shanxi Normal University Taiyuan China

2. Department of Intensive Care Medicine Hanzhong Central Hospital Hanzhong China

Abstract

AbstractSpinal ganglia and peripheral nerves innervate the regenerating tail and muscles of lizards, which provide new opportunities to probe the mechanisms leading to successful functional recovery following spinal cord injury. The regenerated spinal cord and peripheral nerves were detected using immunohistochemistry in original and regenerating tails of Scincella tsinlingensis. Our results showed that positive PCNA, GFAP and SOX2 cells were observed in the ependymal ducts at 15 and 30 days after the autotomy (dpa), with a small number of immunopositive NSE neurons. GFAP and SOX2 positive cells were primarily localized along the regenerated spinal cord after 45 dpa, and the descending nerve of medulla tissue showed positive NSE. Peripheral axons distributed around the muscle and inside the connective tissue and muscle tissue at 15 dpa. The number of axons decreased after 30 dpa. The peripheral axons was mainly distributed between the connective tissue, muscle group and the muscle and epidermis, presenting a radial distribution centred on the cartilage tube at 120 dpa. MBP myelination labelling of the regenerated tail at 30 dpa revealed that the regenerated axons rapidly myelinated along the rostro‐caudal axis. The density of NMJ significantly increased at 120 dpa and 250 dpa. In the second regenerated tails, NMJ density at 250 dpa was still greater than original tails. Overall, these results indicated that neurogenesis was an early event and the ependymal cells were heterogeneous in the regenerated spinal cord of S. tsinlingensis. The regenerated peripheral axons presented a radial distribution centred on the cartilage canal, and the regenerated axons were rapidly myelinated along the rostro‐caudal axis. During the process of regeneration, there were a large number of regenerated neuromuscular joints with high density.

Funder

Natural Science Foundation of Shanxi Province

Publisher

Wiley

Subject

Cell Biology,Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3