The dentate gyrus differentially metabolizes glucose and alternative fuels during rest and stimulation

Author:

York Elisa M.1ORCID,Miller Anne1ORCID,Stopka Sylwia A.23ORCID,Martínez‐François Juan Ramón1ORCID,Hossain Md Amin23ORCID,Baquer Gerard23ORCID,Regan Michael S.23ORCID,Agar Nathalie Y. R.234ORCID,Yellen Gary1ORCID

Affiliation:

1. Department of Neurobiology Harvard Medical School Boston Massachusetts USA

2. Department of Neurosurgery Brigham and Women's Hospital Boston Massachusetts USA

3. Department of Radiology Brigham and Women's Hospital Boston Massachusetts USA

4. Department of Cancer Biology Dana‐Farber Cancer Institute; Harvard Medical School Boston Massachusetts USA

Abstract

AbstractThe metabolic demands of neuronal activity are both temporally and spatially dynamic, and neurons are particularly sensitive to disruptions in fuel and oxygen supply. Glucose is considered an obligate fuel for supporting brain metabolism. Although alternative fuels are often available, the extent of their contribution to central carbon metabolism remains debated. Differential fuel metabolism likely depends on cell type, location, and activity state, complicating its study. While biosensors provide excellent spatial and temporal information, they are limited to observations of only a few metabolites. On the other hand, mass spectrometry is rich in chemical information, but traditionally relies on cell culture or homogenized tissue samples. Here, we use mass spectrometry imaging (MALDI‐MSI) to focus on the fuel metabolism of the dentate granule cell (DGC) layer in murine hippocampal slices. Using stable isotopes, we explore labeling dynamics at baseline, as well as in response to brief stimulation or fuel competition. We find that at rest, glucose is the predominant fuel metabolized through glycolysis, with little to no measurable contribution from glycerol or fructose. However, lactate/pyruvate, β‐hydroxybutyrate (βHB), octanoate, and glutamine can contribute to TCA metabolism to varying degrees. In response to brief depolarization with 50 mM KCl, glucose metabolism was preferentially increased relative to the metabolism of alternative fuels. With an increased supply of alternative fuels, both lactate/pyruvate and βHB can outcompete glucose for TCA cycle entry. While lactate/pyruvate modestly reduced glucose contribution to glycolysis, βHB caused little change in glycolysis. This approach achieves broad metabolite coverage from a spatially defined region of physiological tissue, in which metabolic states are rapidly preserved following experimental manipulation. Using this powerful methodology, we investigated metabolism within the dentate gyrus not only at rest, but also in response to the energetic demand of activation, and in states of fuel competition.

Funder

Harvard Medical School

National Institutes of Health

European Molecular Biology Organization

Publisher

Wiley

Subject

Cellular and Molecular Neuroscience,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Brain energy metabolism: A roadmap for future research;Journal of Neurochemistry;2024-01-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3