Indosinian anatexis of Paleoproterozoic granites in the east Cathaysia Block, South China

Author:

Zhang Wei1ORCID,Zhou Hanwen234,Zhou Xiaohua1,Zhao Xilin15ORCID,Liu Huan1ORCID,Jiang Yang1,Li Chunzhong6

Affiliation:

1. Nanjing Center China Geological Survey Nanjing China

2. School of Earth Science China University of Geosciences Wuhan China

3. Three Gorges Research Center for Geohazards Ministry of Education Wuhan China

4. Badong National Observation and Research Station of Geohazards China University of Geosciences Wuhan China

5. School of Resources and Environmental Engineering Hefei University of Technology Hefei China

6. The 7th Geological Team of Zhejiang Province Lishui China

Abstract

AbstractGranulite facies metamorphism and crustal anatexis exist in the East Cathaysia Block, the exact timing of granulite facies partial melting and its link with orogenesis have not been well constrained. In this study, we carried out petrography, whole rock geochemistry, and zircon U–Pb dating, trace elements and Hf isotopes analyses on Dazhe gneissic granite and banded migmatite from the Badu Group in southwest Zhejiang province in the East Cathaysia Block. The melts were produced through the dehydration of biotite, such as biotite + quartz + plagioclase = orthopyroxene + K‐feldspar + melt and biotite + quartz + plagioclase + sillimanite = garnet + K‐feldspar + melt. Zircons from these rocks show clear core‐rim structure and yield rim and core concordant ages at 233 Ma and 1.83 Ga, respectively. The zircon rims suggesting the melts and the cores are suggesting the protolith of Dazhe gneissic granite and banded migmatite were crystallized from an evolving magma. The zircon cores and rims have negative εHf(t) = −2.2 ~ −6.3 and εHf(t) = −22.8 ~ −32.4, and they give suggestion of the presence of Neoarchean components. Although the major‐element compositions of the gneissic granite and banded migmatite are slightly different, the trace‐element spider diagram and REE pattern show they are similar, and then we find that the protoliths are A‐type granodiorite/diorite. Combined with the published data, we suggested that the Dazhe gneissic granite and banded migmatite were formed through granulite facies partial melting at 233 Ma, which was promoted by crustal shortening and thickening of the collision orogeny between East Cathaysia Block and an unknown terrane with a NNE trend structure line. The protoliths (granite or granodiorite) of Dazhe gneissic granite and banded migmatite crystallized at 1.83 Ga by reworking of the Neoarchean components of East Cathaysia Block. The Paleoproterozoic (1912–1819 Ma) collisional orogeny and the later intraplate rifting stage are corresponding to the aggregation and breakup of the Columbia supercontinent.

Funder

China Geological Survey, Ministry of Natural Resources

National Natural Science Foundation of China

Publisher

Wiley

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3