Effect of resting time on rheological properties of glass bead suspensions: Depletion and bridging force among particles

Author:

Ji Yanliang1ORCID,Becker Simon2,Lu Zichen3ORCID,Mezhov Alexander4,von Klitzing Regine2,Wolfram Schmidt4,Stephan Dietmar1ORCID

Affiliation:

1. Department of Civil Engineering Technische Universität Berlin Berlin Germany

2. Division of Soft Matter at Interfaces Department of Physics Technische Universität Darmstadt Darmstadt Germany

3. Key Laboratory of Advanced Civil Engineering Materials Ministry of Education, Tongji University Shanghai China

4. Division of Technology of Construction Materials Bundesanstalt für Materialforschung und Prüfung (BAM) Berlin Germany

Abstract

AbstractThe effect of resting time on the rheological properties of cement suspensions is generally explained by early formed structure and overconsumption of polycarboxylate superplasticizers (PCEs). In this paper, we propose that the influence of resting time on the rheological properties is closely related to size variation of non‐absorbed PCE. To identify this, glass bead suspensions were prepared with various amounts of PCE and ionic solution, and their rheological properties were evaluated at various times. We found that the yield stress increases with time at higher PCE concentrations and higher ionic strength solutions. Adsorbed PCE during resting tends to bridge the particles rather than disperse them. In addition, it was found that hydrodynamic radius of PCE increased with resting time, and depletion forces resulting from non‐absorbed PCE size changes correlate well with the increased yield stress.

Publisher

Wiley

Subject

Materials Chemistry,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3