Contrasting mechanisms of non‐vascular and vascular plants on spatial turnover in multifunctionality in the Antarctic continent

Author:

Cui Hanwen1ORCID,Chen Shuyan2ORCID,Song Hongxian2,Liu Ziyang1,Chen Jingwei1,Zhang Anning2,Xiao Sa1ORCID,Jiang Xiaoxuan1,Yang Zi2,Li Xin2,An Lizhe23,Ding Haitao4,van der Plas Fons5ORCID

Affiliation:

1. State Key Laboratory of Herbage Improvement and Grassland Agro‐Ecosystems, College of Ecology Lanzhou University Lanzhou Gansu People's Republic of China

2. Key Laboratory of Cell Activities and Stress Adaptations Ministry of Education, School of Life Sciences Lanzhou University Lanzhou Gansu People's Republic of China

3. College of Forestry Beijing Forestry University Beijing People's Republic of China

4. Antarctic Great Wall Ecology National Observation and Research Station Polar Research Institute of China, Ministry of Natural Resources Shanghai People's Republic of China

5. Plant Ecology and Nature Conservation Group Wageningen University Wageningen The Netherlands

Abstract

Abstract Dominant plants play crucial roles in supporting the functioning of terrestrial ecosystems. Plants can influence the spatial heterogeneity of environmental factors, as well as the spatial turnover in the composition of soil communities (i.e. β‐diversity of soil communities). However, we still poorly understand how dominant plants drive the spatial turnover in multiple ecosystem functions (β‐multifunctionality hereafter), and to which extent the effects of dominant plants are mediated by changes in environmental heterogeneity and the β‐diversity of soil communities. Antarctica supports one of the most challenging environments on the planet including low temperature and water availability. Here, we collected soil samples under three dominant plants (lichen, moss and vascular plants) and bare ground. We measured carbon storage, nutrient availability, nutrient decomposition, microbial biomass and pathogen control to calculate β‐multifunctionality. Both non‐vascular and vascular plants were associated with increased β‐multifunctionality compared to bare ground. We further showed that lichen mainly affected β‐multifunctionality through soil temperature heterogeneity and β‐bacterial diversity. Similarly, moss mainly affected β‐multifunctionality through the spatial heterogeneity of soil water content and β‐bacterial diversity. However, vascular plants did not significantly affect environmental heterogeneity. Instead, the responses of β‐multifunctionality to vascular plants were mainly driven by the β‐diversity of soil communities. These results indicate that environmental heterogeneity is important for turnover in multiple ecosystem functions in early successional stages (dominated by non‐vascular plants), while the importance of soil communities' heterogeneity becomes more significant in late successional stages (dominated by vascular plants). Synthesis. Our findings highlight the fundamental role of dominant plants in controlling the spatial turnover in ecosystem functions, and suggest that accelerated succession under current climate warming may increase bacterial β‐diversity but decrease abiotic heterogeneity, thereby leading to both increases (e.g. regarding functions related to microbial biomass) and decreases (e.g. regarding functions related to nutrient availability) in β‐multifunctionality and hence the spatial turnover in levels of ecosystem functioning.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Gansu Province

Higher Education Discipline Innovation Project

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3