Affiliation:
1. Forest & Nature Lab, Department of Environment Ghent University Melle‐Gontrode Belgium
2. Plant Sciences Unit Flanders Research Institute for Agriculture, Fisheries and Food (ILVO) Melle Belgium
Abstract
Abstract
Via sheltering, decoupling and buffering mechanisms, tree canopies have the capacity to mitigate impacts of multiple global‐change drivers on below‐canopy processes and organisms in forests. As a result, canopies have an important potential as nature‐based solution.
The optimal combinations of forest canopy structural attributes to jointly mitigate the impacts of multiple global‐change drivers on below‐canopy organisms and processes have received little attention to date.
To help solving this research gap, here we review how forest canopies modulate the effects of four important global‐change drivers—climate warming, drought, air pollution and biological invasions—on below‐canopy conditions. Particular attention is paid to mitigating canopy attributes that can be influenced by forest management, including canopy cover, tree species composition and vertical and horizontal structure.
Synthesis. We show that the potential of forest canopies to mitigate global‐change effects is highly context‐dependent and that optimal canopy‐based solutions strongly depend on the environmental context and the targeted subcanopy organisms. Hence, holistic approaches, which maximize synergies and minimize trade‐offs, are needed to optimize the solution potential of forest canopies.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献