Beyond resilience: Responses to changing climate and disturbance regimes in temperate forest landscapes across the Northern Hemisphere

Author:

Dollinger Christina1ORCID,Rammer Werner1ORCID,Suzuki Kureha F.23,Braziunas Kristin H.1ORCID,Keller Timon T.4,Kobayashi Yuta5,Mohr Johannes1,Mori Akira S.2ORCID,Turner Monica G.4,Seidl Rupert16ORCID

Affiliation:

1. Ecosystem Dynamics and Forest Management Group, School of Life Sciences Technical University of Munich Freising Germany

2. Research Center for Advanced Science and Technology The University of Tokyo Tokyo Japan

3. Graduate School of Environment and Information Sciences Yokohama National University Yokohama Kanagawa Japan

4. Department of Integrative Biology University of Wisconsin‐Madison Madison Wisconsin USA

5. Field Science Center Tokyo University of Agriculture and Technology Tokyo Japan

6. Berchtesgaden National Park Berchtesgaden Germany

Abstract

AbstractClimate change has profound impacts on forest ecosystem dynamics and could lead to the emergence of novel ecosystems via changes in species composition, forest structure, and potentially a complete loss of tree cover. Disturbances fundamentally shape those dynamics: the prevailing disturbance regime of a region determines the inherent variability of a system, and its climate‐mediated change could accelerate forest transformation. We used the individual‐based forest landscape and disturbance model iLand to investigate the resilience of three protected temperate forest landscapes on three continents—selected to represent a gradient from low to high disturbance activity—to changing climate and disturbance regimes. In scenarios of sustained strong global warming, natural disturbances increased across all landscapes regardless of projected changes in precipitation (up to a sevenfold increase in disturbance rate over the 180‐year simulation period). Forests in landscapes with historically high disturbance activity had a higher chance of remaining resilient in the future, retaining their structure and composition within the range of variability inherent to the system. However, the risk of regime shift and forest loss was also highest in these systems, suggesting forests may be vulnerable to abrupt change beyond a threshold of increasing disturbance activity. Resilience generally decreased with increasing severity of climate change. Novelty in tree species composition was more common than novelty in forest structure, especially under dry climate scenarios. Forests close to the upper tree line experienced high novelty in structure across all three study systems. Our results highlight common patterns and processes of forest change, while also underlining the diverse and context‐specific responses of temperate forest landscapes to climate change. Understanding past and future disturbance regimes can anticipate the magnitude and direction of forest change. Yet, even across a broad gradient of disturbance activity, we conclude that climate change mitigation is the most effective means of maintaining forest resilience.

Funder

Japan Advanced Institute of Science and Technology

Japan Science and Technology Agency

Japan Society for the Promotion of Science

H2020 European Research Council

National Park Service

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3