Big data research in nursing: A bibliometric exploration of themes and publications

Author:

Li Bo1,Du Kun1ORCID,Qu Guanchen2,Tang Naifu1

Affiliation:

1. Department of Emergency Medicine The First Affiliated Hospital of Zhengzhou University Zhengzhou China

2. School of Artificial Intelligence Shenyang University of Technology Shenyang China

Abstract

AbstractAimsTo comprehend the current research hotspots and emerging trends in big data research within the global nursing domain.DesignBibliometric analysis.MethodsThe quality articles for analysis indexed by the science core collection were obtained from the Web of Science database as of February 10, 2023.The descriptive, visual analysis and text mining were realized by CiteSpace and VOSviewer.ResultsThe research on big data in the nursing field has experienced steady growth over the past decade. A total of 45 core authors and 17 core journals around the world have contributed to this field. The author's keyword analysis has revealed five distinct clusters of research focus. These encompass machine/deep learning and artificial intelligence, natural language processing, big data analytics and data science, IoT and cloud computing, and the development of prediction models through data mining. Furthermore, a comparative examination was conducted with data spanning from 1980 to 2016, and an extended analysis was performed covering the years from 1980 to 2019. This bibliometric mapping comparison allowed for the identification of prevailing research trends and the pinpointing of potential future research hotspots within the field.ConclusionsThe fusion of data mining and nursing research has steadily advanced and become more refined over time. Technologically, it has expanded from initial natural language processing to encompass machine learning, deep learning, artificial intelligence, and data mining approach that amalgamates multiple technologies. Professionally, it has progressed from addressing patient safety and pressure ulcers to encompassing chronic diseases, critical care, emergency response, community and nursing home settings, and specific diseases (Cardiovascular diseases, diabetes, stroke, etc.). The convergence of IoT, cloud computing, fog computing, and big data processing has opened new avenues for research in geriatric nursing management and community care. However, a global imbalance exists in utilizing big data in nursing research, emphasizing the need to enhance data science literacy among clinical staff worldwide to advance this field.Clinical RelevanceThis study focused on the thematic trends and evolution of research on the big data in nursing research. Moreover, this study may contribute to the understanding of researchers, journals, and countries around the world and generate the possible collaborations of them to promote the development of big data in nursing science.

Publisher

Wiley

Subject

General Nursing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3