Examining early adherence measures as predictors of subsequent adherence in an intensive longitudinal study of individuals in mutual help groups: One day at a time

Author:

McCool Matison W.1ORCID,Schwebel Frank J.1ORCID,Pearson Matthew R.1,Tonigan J. Scott1

Affiliation:

1. Center on Alcohol, Substance Use, and Addictions The University of New Mexico Albuquerque New Mexico USA

Abstract

AbstractBackgroundIndividuals with a substance use disorder complete ecological momentary assessments (EMA) at lower rates than community samples. Previous research in tobacco users indicates that early log‐in counts to smoking cessation websites predicted subsequent smoking cessation website usage. We extended this line of research to examine individuals who are seeking to change their drinking behaviors through mutual support groups. We examined whether adherence in the first 7 days (1487 observations) of an intensive longitudinal study design could predict subsequent EMA protocol adherence (50% and 80% adherence separately) at 30 (5700 observations) and 60 days (10,750 observations).MethodsParticipants (n = 132) attending mutual‐help groups for alcohol use completed two assessments per day for 6 months. We trained four classification models (logistic regression, recursive partitioning, support vector machines, and neural networks) using a training dataset (80% of the data) with each of the first 7 days' cumulative EMA assessment completion. We then tested these models to predict the remaining 20% of the data and evaluated model classification accuracy. We also used univariate receiver operating characteristic curves to examine the minimal combination of days and completion percentage to best predict subsequent adherence.ResultsDifferent modeling techniques can be used with early assessment completion as predictors to accurately classify individuals that will meet minimal and optimal adherence rates later in the study. Models ranged in their performance from poor to outstanding classification, with no single model clearly outperforming other models.ConclusionsTraditional and machine learning approaches can be used concurrently to examine several methods of predicting EMA adherence based on early assessment completion. Future studies could investigate the use of several algorithms in real time to help improve participant adherence rates by monitoring early adherence and using early assessment completion as features in predictive modeling.

Funder

National Institute on Drug Abuse

National Institute on Alcohol Abuse and Alcoholism

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3