Under pressure: assessment of chemical stress on restored river sections using effect‐based methods

Author:

Hörchner Sarah12ORCID,Moulinec Ariane34,Sundermann Andrea234,Oehlmann Jörg12,Oetken Matthias12

Affiliation:

1. Department Aquatic Ecotoxicology Goethe University Frankfurt Max‐von‐Laue‐Straße 13 60438 Frankfurt am Main Germany

2. Competence Center Water Hesse Max‐von‐Laue‐Straße 13 60438 Frankfurt am Main Germany

3. Department of River Ecology and Conservation Senckenberg Research Institute and Natural History Museum Frankfurt Clamecystraße 12 63571 Gelnhausen Germany

4. Faculty of Biology, Institute of Ecology, Evolution and Diversity Goethe University Frankfurt Max‐von‐Laue‐Straße 13 60438 Frankfurt am Main Germany

Abstract

Aquatic ecosystems are affected by multiple stressors, including hydrological and morphological degradation, high nutrient loading, and chemical pollution. To improve freshwater habitats, hydromorphological restorations have been increasingly implemented. However, follow‐up assessments often show little to no improvement in ecological status, even years after restoration measures have been implemented. The success of restoration projects can be compromised by other stressors, such as insufficient water and sediment quality, which often receive less attention compared to nonchemical stressors. In this study, the impact of chemical stress on the outcome of five river restorations was evaluated ecologically, chemically, and ecotoxicologically. Overall, the habitat structure was considerably improved through the restoration measures, whereas the species communities did not show a consistent trend toward an improved ecological status. Effect‐based methods were used for an integrative assessment of the exposure to chemical mixtures in water and sediment samples of restored stream sections. Differences in toxicity between restored and non‐restored sections were found but did not show a consistent trend among the applied assays. In contrast, the chemical analysis showed that the sections of the same stream were similar in their chemical composition, and differences within a stream were primarily due to sediment contamination. The results of this study suggest that chemical pollution is a relevant factor preventing the success of restoration measures and, ultimately, the improvement of the ecological status of rivers. They also demonstrate the applicability of EBMs in water quality monitoring to detect mixture toxicity in streams and link chemical and ecological assessment.

Funder

Umweltbundesamt

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3