Changes in wax composition but not amount enhance cuticular transpiration

Author:

Grünhofer Paul1ORCID,Herzig Lena1ORCID,Zhang Qihui1ORCID,Vitt Simon2ORCID,Stöcker Tyll3ORCID,Malkowsky Yaron4,Brügmann Tobias5ORCID,Fladung Matthias5ORCID,Schreiber Lukas1ORCID

Affiliation:

1. Institute of Cellular and Molecular Botany University of Bonn Bonn Germany

2. Institute for Evolutionary Biology and Ecology University of Bonn Bonn Germany

3. Institute of Crop Science and Resource Conservation University of Bonn Bonn Germany

4. Nees Institute for Biodiversity of Plants University of Bonn Bonn Germany

5. Thünen Institute of Forest Genetics Grosshansdorf Germany

Abstract

AbstractThis study focuses on the role of the qualitative leaf wax composition in modulating the cuticular water loss using a Populus × canescens cer6 mutant line, which accumulates C34–C46 wax ester dimers and is reduced in wax monomers >C24. The two literature‐based hypotheses to be tested were the importance of the amount of wax esters and the weighted mean carbon chain length in restricting cuticular water loss. The main results were acquired by chemical analysis of cuticular wax and gravimetric cuticular transpiration measurements. Besides additional physiological measurements, the leaf surface properties were characterised by scanning electron microscopy and spectrophotometric light reflectance quantification. Mutation of the CER6 gene resulted in striking changes in qualitative wax composition but not quantitative wax amount. Based on the strong accumulation of dimeric wax esters, the relative proportion of esters increased to >90%, and the weighted mean carbon chain length increased by >6 carbon atoms. These qualitative alterations were found to increase the cuticular transpiration of leaves by twofold. Our results do not support the hypotheses that enhanced amounts of wax esters or increased weighted mean carbon chain lengths of waxes lead to reduced cuticular transpiration.

Publisher

Wiley

Subject

Plant Science,Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3