Histone H3K9 acetylation modulates gene expression of key enzymes in the flavonoid and abscisic acid pathways and enhances drought resistance of sea buckthorn

Author:

Li Jiayi1,Wei Jihua1,Song Yating1,Chen Ning1,Ni Bingbing1,Zhang Jianguo12,He Caiyun1ORCID

Affiliation:

1. State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration Research Institute of Forestry, Chinese Academy of Forestry Beijing China

2. Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University Nanjing China

Abstract

AbstractThe effect of histone H3K9 acetylation modification on gene expression and drought resistance in drought‐resistant tree species is not clear. Using the chromatin immunoprecipitation (ChIP) method, this study obtained nine H3K9 acetylated protein‐interacting DNAs from sea buckthorn seedlings, and the ChIP sequencing result predicted about 56,591, 2217 and 5119 enriched region peaks in the control, drought and rehydration comparative groups, respectively. Gene functional analysis of differential peaks from three comparison groups revealed that 105 pathways were involved in the drought resistance process, and 474 genes were enriched in the plant hormone signaling transduction pathways. Combined ChIP‐seq and transcriptome analysis revealed that six genes related to abscisic acid synthesis and signaling pathways, 17 genes involved in flavonoid biosynthesis, and 15 genes involved in carotenoid biosynthesis were positively regulated by H3K9 acetylation modification under drought stress. Under drought stress conditions, the content of abscisic acid and the expression of related genes were significantly up‐regulated, while the content of flavonoids and the expression of key enzymes involved in their synthesis were largely down‐regulated. Meanwhile, after exposure to histone deacetylase inhibitors (trichostatin A), the change of abscisic acid and flavonoids content and their related gene expression were slowed down under drought stress. This study will provide an important theoretical basis for understanding the regulatory mechanisms of histone acetylation modifications in sea buckthorn drought resistance.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

Subject

Cell Biology,Plant Science,Genetics,General Medicine,Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3