FIGL1 prevents aberrant chromosome associations and fragmentation and limits crossovers in polyploid wheat meiosis

Author:

Osman Kim1ORCID,Desjardins Stuart D.2,Simmonds James3,Burridge Amanda J.4,Kanyuka Kostya5ORCID,Henderson Ian R.6,Edwards Keith J.4,Uauy Cristobal3ORCID,Franklin F. Chris H.1,Higgins James D.2ORCID,Sanchez‐Moran Eugenio1ORCID

Affiliation:

1. School of Biosciences University of Birmingham Edgbaston Birmingham B15 2TT UK

2. Department of Genetics and Genome Biology University of Leicester University Road, Adrian Building Leicester LE1 7RH UK

3. John Innes Centre Norwich Research Park Norwich NR4 7UH UK

4. Life Sciences Building University of Bristol 24 Tyndall Avenue Bristol BS8 1TQ UK

5. NIAB 93 Lawrence Weaver Rd Cambridge CB3 0LE UK

6. Department of Plant Sciences University of Cambridge Downing Street Cambridge CB2 3EA UK

Abstract

Summary Meiotic crossovers (COs) generate genetic diversity and are crucial for viable gamete production. Plant COs are typically limited to 1–3 per chromosome pair, constraining the development of improved varieties, which in wheat is exacerbated by an extreme distal localisation bias. Advances in wheat genomics and related technologies provide new opportunities to investigate, and possibly modify, recombination in this important crop species. Here, we investigate the disruption of FIGL1 in tetraploid and hexaploid wheat as a potential strategy for modifying CO frequency/position. We analysed figl1 mutants and virus‐induced gene silencing lines cytogenetically. Genetic mapping was performed in the hexaploid. FIGL1 prevents abnormal meiotic chromosome associations/fragmentation in both ploidies. It suppresses class II COs in the tetraploid such that CO/chiasma frequency increased 2.1‐fold in a figl1 msh5 quadruple mutant compared with a msh5 double mutant. It does not appear to affect class I COs based on HEI10 foci counts in a hexaploid figl1 triple mutant. Genetic mapping in the triple mutant suggested no significant overall increase in total recombination across examined intervals but revealed large increases in specific individual intervals. Notably, the tetraploid figl1 double mutant was sterile but the hexaploid triple mutant was moderately fertile, indicating potential utility for wheat breeding.

Funder

Biotechnology and Biological Sciences Research Council

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unravelling meiosis in wheat;New Phytologist;2024-05-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3