Novel approach for predicting the creep behavior of ceramic fibers using dimensional analysis

Author:

Berman Renan Belli1,Almeida Renato Saint Martin2ORCID,Azmah Hanim Mohamed Ariff3,de Pieri Edson Roberto4,Al‐Qureshi Hazim Ali1

Affiliation:

1. Department of Mechanical Engineering Federal University of Santa Catarina (UFSC) Joinville Brazil

2. Advanced Ceramics University of Bremen Bremen Germany

3. Department of Mechanical and Manufacturing Engineering University Putra Malaysia Serdang Malaysia

4. Department of Automation and Systems Engineering Federal University of Santa Catarina (UFSC) Florianópolis Brazil

Abstract

AbstractA more generalized approach for predicting the steady‐state creep rate of ceramic fibers under extensive stress ranges is proposed. Creep rate equations derived from dimensional analysis, such as Almeida's creep equation and Arrhenius’ creep equation, were evaluated using Buckingham's method, and the corresponding π groups were determined. Subsequently, a new equation is proposed using the usual semi‐empirical constants for the diffusional and power law creep phenomena, along with an additional power law exponent to account for changes in creep mechanisms at higher stresses. The proposed equation was used to fit the creep rate data of the fiber Nextel 720 at various temperatures and constant stress, which demonstrated a good fit with an adjusted R‐squared of .96. Subsequently, the equation was used to predict the creep rate at constant temperature and various stresses, exhibiting an adjusted R‐squared of .77 and .85, depending on the scatter of the used data. The predictive results of the proposed equation were then compared to those obtained using the Arrhenius creep equation, which tends to higher rates at high stresses. In summary, the novel equation can be more efficiently applied in predicting the creep rate of ceramic fibers across a broader spectrum of stress.

Publisher

Wiley

Reference31 articles.

1. ArmaniCJ.Creep performance of oxide ceramic fiber materials at elevated temperature in air and in steam. [Doctor thesis].Ohio:Air University Department of the Air Force;2011.

2. Creep investigations of alumina-based all-oxide ceramic matrix composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3