Affiliation:
1. Department of Chemistry Isfahan University of Technology Isfahan Iran
Abstract
AbstractSc2O3–CeO2–Y2O3– stabilized zirconia (ScCeYSZ) nanoparticles with different percentages of stabilizer agents [sample1: 1.8 wt.% (Sc2O3) 8.3 wt.% (CeO2) 1.9 wt.% (Y2O3), sample 2: 1.1 wt.% (Sc2O3) 9.0 wt.% (CeO2) 1.9 wt.% (Y2O3), sample 3: .5 wt.% (Sc2O3) 9.6 wt.% (CeO2) 1.9 wt.% (Y2O3) stabilized zirconia] were synthesized with Pechini method and consolidated by spark plasma sintered method. The results showed that despite the [(sample)1: 1.8 wt.% (Sc2O3) 8.3 wt.% (CeO2) 1.9 wt.% (Y2O3)] had lower density and higher porosity percentage compared to other samples, it had better calcium–magnesium–alumina–silicate (CMAS) corrosion resistance compared to other samples and the yttria‐stabilized zirconia nanopowders (nano‐YSZ) sample. It was due to the higher acidic nature and tetragonality of the (sample)1 sintered body compared to other samples and YSZ ceramic in the CMAS corrosive medium. Moreover, the results of phase and microstructural analysis following CMAS corrosion revealed the formation of the monoclinic phase and rod‐shaped CaAl2Si2O8 particles on the surface of the sampled sintered sample. However, the nano‐YSZ sample corroded homogenously and delamination occurred after the CMAS corrosion test.
Funder
Iran National Science Foundation