A cohesive model for the rupture of concrete by low‐cycle fatigue

Author:

Lima Gedyson1,Bittencourt Eduardo1ORCID

Affiliation:

1. Departamento de Engenharia Civil Universidade Federal do Rio Grande do Sul Porto Alegre Brazil

Abstract

AbstractIn this work, a finite element cohesive fatigue model for concrete is proposed. A procedure to simulate monotonic rupture is included. Damage is calculated as a function of accumulated crack openings and the current traction on the cohesive zone. Only mode I fracture is considered. Concretes with different strengths and specimens with different sizes are considered. Size dependency was introduced in the model through the cohesive strength and the corresponding cohesive length. Other monotonic and cyclic properties are considered constant or dependent on the material strength. An excellent fit with experiments is obtained. Methodology is able to capture an embrittlement of the fatigue process with increase in size. In this case, crack (or process zone) becomes unstable for shorter sizes and a more abrupt change to unstable growth is observed. Predictive capabilities of the model are observed considering S‐N curves. A good match was observed in the low‐cycle fatigue range.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Wiley

Reference50 articles.

1. Structural Failure

2. An overview of the fatigue behaviour of plain and fibre reinforced concrete

3. HattW.Fatigue of concrete. Highway Research Board Proceedings1925;4.

4. Fatigue of mortar;Crepps RB;Proc Amer Soc Test Mater,1923

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3