The effects of chilling and forcing temperatures on spring synchrony between larch casebearer and tamarack

Author:

Nanninga Claudia1ORCID,Ward Samuel F.2ORCID,Aukema Brian H.2,Montgomery Rebecca A.1

Affiliation:

1. Department of Natural Resources Science and Management University of Minnesota St Paul Minnesota USA

2. Department of Entomology University of Minnesota St Paul Minnesota USA

Abstract

Abstract Spring phenological synchrony can be important for tree‐insect interactions. Depending on the magnitude and direction of phenological shifts, overwintering insects could be affected in many ways, for example, facing starvation or having to contend with increased chemical or physical defences of host trees. If temperature has different influences on the phenology of trees and insects, climate change can alter spring phenological synchrony. In this experiment, we exposed tamarack seedlings and larch case bearer larvae from Minnesota, USA, to a variety of chilling and forcing temperatures and measured spring phenology (twig bud break and larval activation). We additionally measured case bearer performance on seedlings that were exposed to different forcing × chilling levels, tracking larval survivorship to adulthood. Warmer forcing enhanced larval activation and bud break, but larval development slowed down past 21°C. Higher chilling temperatures accelerated bud break, but the effect was inconclusive for larvae. There was no chilling × forcing interaction for either species. Spring activity accelerated more quickly with increases in temperature for larvae than for seedlings, resulting in increased phenological synchrony at warmer temperatures. Activation rates for overwintering larvae were highest at 27°C, while survivorship to adulthood following spring activation was highest at 21°C. At temperatures at or beyond 27°C, no larvae reached adulthood. Warmer winters and springs will likely initially increase spring synchrony between tamarack and larch case bearer, exposing larvae to younger, potentially more nutritious foliage, but extremely warm spring temperatures may decrease survivorship of larvae to adulthood.

Funder

Minnesota Agricultural Experiment Station

U.S. Forest Service

Publisher

Wiley

Subject

Insect Science,Agronomy and Crop Science,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3