Interaction of total dissolved gas supersaturation and suspended sediment on swimming performance of bighead carp (Hypopthalmichthys nobilis)

Author:

Zhang Qiyu1ORCID,Liu Xiaoqing1ORCID,Shi Haoran1,Yang Yao1

Affiliation:

1. School of Energy and Power Engineering Xihua University Chengdu China

Abstract

AbstractWhen dams discharge floodwaters, the river downstream often becomes supersaturated in total dissolved gases (TDG) and contains high volumes of suspended sediments (SS). Supersaturated TDG and high SS concentrations in water may affect fish physiologically in ways that manifest in swimming performance. Despite increasing awareness of the separate effects of TDG supersaturation and SS, knowledge about their synergistic effects remains unknown. To explore the interactive effects of TDG and SS on the swimming performance of bighead carp, the juveniles were exposed to 100, 110, 115, 120, 125, 130, 135, and 140% of TDG‐supersaturated water with SS concentrations of 0, 50, 100, and 150 mg/L, respectively, and the critical swimming ability speed (Ucrit) and burst swimming ability speed (Uburst) were measured. The results indicated that the swimming ability (Ucrit and Uburst) decreased when TDG levels and SS concentrations increased. TDG and SS did not interact significantly to decrease both Ucrit and Uburst. In contrast, exposure to TDG alone significantly decreased both Ucrit and Uburst, whereas exposure to SS alone decreased only Uburst. In addition, our results suggested that there was a negative linear relationship between TDG and fatigue time. Swimming ability can decline significantly due to high TDG levels (>130%). Therefore, high TDG levels (>130%) should be restricted during reservoir operation to prevent the stress caused by TDG.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3