Affiliation:
1. Center for Psychopharmacology Diakonhjemmet Hospital PO Box 85 Vinderen, 0319 Oslo Norway
2. NORMENT Center, Institute of Clinical Medicine University of Oslo and Oslo University Hospital Oslo Norway
3. Department of Pharmaceutical Biosciences, School of Pharmacy University of Oslo Oslo Norway
4. Department of Pharmacology Oslo University Hospital Oslo Norway
Abstract
AimsAtomoxetine is mainly metabolized by CYP2D6 while CYP2C19 plays a secondary role. It is known that patients carrying genotypes encoding decreased/absent CYP2D6 metabolism obtain higher atomoxetine concentrations and are at increased risk of adverse effects. Here, we aimed to investigate the added effects of reduced‐function CYP2C19 genotype on atomoxetine concentrations in real‐world settings.MethodsSerum atomoxetine concentrations and CYP2D6/2C19 genotypes were included from a therapeutic drug monitoring service. Patients were first subgrouped according to CYP2D6 encoding normal, reduced or absent CYP2D6 metabolism, referred to as normal (NM), intermediate (IM) or poor metabolizers (PM). Then, the effect of reduced‐function CYP2C19 genotypes was investigated. Genotyping of the CYP2D6 nonfunctional or reduced variant alleles comprised CYP2D6*3‐*6, *9‐*10 and *41. For CYP2C19, the CYP2C19*2 was analysed to define metabolizer phenotype. Dose‐adjusted serum atomoxetine concentration was the exposure measure.ResultsUsing a patient cohort (n = 315), it was found that CYP2D6 IM and PM patients had 1.9‐fold (95% confidence interval: 1.4–2.7) and 9.6‐fold (5.9–16) higher exposure of atomoxetine compared with CYP2D6 NMs. CYP2C19*2 carriers had 1.5‐fold (1.1–2.2) higher atomoxetine exposure than noncarriers regardless of CYP2D6 genotype.ConclusionCYP2D6 genotype has a great impact on atomoxetine exposure, where our real‐world data suggest atomoxetine dose requirements to be around half and 1/10 in CYP2D6 IM and PM vs. NM patients, respectively. When adding CYP2C19 genotype as a factor of relevance for personalized atomoxetine dosing, CYP2C19*2 carriers should further reduce the dose by a third. These findings suggest that pre‐emptive CYP2D6/CYP2C19 genotyping should be performed to individualize atomoxetine dosing and prevent adverse effects.
Subject
Pharmacology (medical),Pharmacology
Reference22 articles.
1. ØrstavikR GustavsonK Rohrer‐BaumgartnerN et al.ADHD i Norge: En statusrapporthttps://www.fhi.no/globalassets/dokumenterfiler/rapporter/2017/adhd_i_norge.pdf. Accessed June 1 2022
2. Helsedirektoratet.ADHD: Nasjonal faglig retningslinje.https://www.helsedirektoratet.no/retningslinjer/adhd. Accessed June 1 2022
3. Attention-Deficit/Hyperactivity Disorder Trajectories From Childhood to Young Adulthood
4. Atomoxetine: A Review of Its Pharmacokinetics and Pharmacogenomics Relative to Drug Disposition
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献