The role of silanol groups on the reaction of SiO2 and anhydrous hydrogen fluoride gas

Author:

Ono Yoshitaka12,Nagai Sho2,Hayashi Yasuo2,Urashima Shu‐hei13ORCID,Yui Hiroharu13ORCID

Affiliation:

1. Department of Chemistry Faculty of Science Tokyo University of Science Shinjuku Tokyo Japan

2. Innovative Technology Laboratories AGC Inc. Yokohama Kanagawa Japan

3. Water Frontier Research Center Research Institute for Science & Technology Tokyo University of Science Shinjuku Tokyo Japan

Abstract

AbstractIt is essential to etch SiO2 for producing silica glass components, semiconductor devices, and so on. Although wet‐etching with hydrogen fluoride (HF) solutions is usually employed for this purpose, it faces a drawback that microstructures stick during the drying of the solution. To overcome this problem, we have developed a dry‐etching technique with gaseous HF at high temperatures. In the present study, an interesting phenomenon was found that silicon thermal oxides were much less etched than vitreous silica by gaseous HF. Such difference had not been found in wet‐ or humid HF gas etching. Because their bulk chemical formulae are the same (SiO2), it was suggested that the surface species affected the reaction rate. In fact, preprocessing with water vapor plasma remarkably increased the etching rate on the thermal oxides layer, and vacuum heating almost completely suppressed the reaction on the vitreous silica and the plasma‐treated thermal oxides. These results indicate that the surface silanol groups enhance the reaction between SiO2 and gaseous HF. Based on the results, a model of chain reaction for SiO2 and gaseous HF was proposed, where the surface silanol groups act as the reaction center.

Publisher

Wiley

Subject

Materials Chemistry,Ceramics and Composites

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3