Increased genetic diversity and immigration after West Nile virus emergence in American crows: No evidence for a genetic bottleneck

Author:

Townsend Andrea K.1ORCID,Jones Melissa L.2,Chen Nancy3,Chivily Caroline1,McAndrews Casey1,Clark Anne B.4,McGowan Kevin J.5,Eimes John6ORCID

Affiliation:

1. Department of Biology Hamilton College Clinton New York USA

2. Department of Animal Science University of California Davis Davis California USA

3. Department of Biology University of Rochester Rochester New York USA

4. Department of Biological Sciences Binghamton University Binghamton New York USA

5. Cornell Lab of Ornithology Cornell University Ithaca New York USA

6. Sungkyunkwan University Suwon Korea

Abstract

AbstractInfectious diseases can cause steep declines in wildlife populations, leading to changes in genetic diversity that may affect the susceptibility of individuals to infection and the overall resilience of populations to pathogen outbreaks. Here, we examine evidence for a genetic bottleneck in a population of American crows (Corvus brachyrhynchos) before and after the emergence of West Nile virus (WNV). More than 50% of marked birds in this population were lost over the 2‐year period of the epizootic, representing a 10‐fold increase in adult mortality. Using analyses of single‐nucleotide polymorphisms (SNPs) and microsatellite markers, we tested for evidence of a genetic bottleneck and compared levels of inbreeding and immigration in the pre‐ and post‐WNV populations. Counter to expectations, genetic diversity (allelic diversity and the number of new alleles) increased after WNV emergence. This was likely due to increases in immigration, as the estimated membership coefficients were lower in the post‐WNV population. Simultaneously, however, the frequency of inbreeding appeared to increase: Mean inbreeding coefficients were higher among SNP markers, and heterozygosity–heterozygosity correlations were stronger among microsatellite markers, in the post‐WNV population. These results indicate that loss of genetic diversity at the population level is not an inevitable consequence of a population decline, particularly in the presence of gene flow. The changes observed in post‐WNV crows could have very different implications for their response to future pathogen risks, potentially making the population as a whole more resilient to a changing pathogen community, while increasing the frequency of inbred individuals with elevated susceptibility to disease.

Funder

National Science Foundation

Publisher

Wiley

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3