Zonula occludens‐1 distribution and barrier functions are affected by epithelial proliferation and turnover rates

Author:

Imafuku Keisuke1ORCID,Iwata Hiroaki12,Natsuga Ken1,Okumura Makoto3,Kobayashi Yasuaki3,Kitahata Hiroyuki4,Kubo Akiharu56,Nagayama Masaharu3,Ujiie Hideyuki1

Affiliation:

1. Department of Dermatology, Faculty of Medicine and Graduate School of Medicine Hokkaido University Sapporo Japan

2. Department of Dermatology Gifu University Graduate School of Medicine Gifu Japan

3. Research Institute for Electronic Science Hokkaido University Sapporo Japan

4. Department of Physics, Graduate School of Science Chiba University Chiba Japan

5. Division of Dermatology, Department of Internal Related Kobe University Graduate School of Medicine Kobe Japan

6. Department of Dermatology Keio University School of Medicine Tokyo Japan

Abstract

AbstractZonula occludens‐1 (ZO‐1) is a scaffolding protein of tight junctions, which seal adjacent epithelial cells, that is also expressed in adherens junctions. The distribution pattern of ZO‐1 differs among stratified squamous epithelia, including that between skin and oral buccal mucosa. However, the causes for this difference, and the mechanisms underlying ZO‐1 spatial regulation, have yet to be elucidated. In this study, we showed that epithelial turnover and proliferation are associated with ZO‐1 distribution in squamous epithelia. We tried to verify the regulation of ZO‐1 by comparing normal skin and psoriasis, known as inflammatory skin disease with rapid turnover. We as well compared buccal mucosa and oral lichen planus, known as an inflammatory oral disease with a longer turnover interval. The imiquimod (IMQ) mouse model, often used as a psoriasis model, can promote cell proliferation. On the contrary, we peritoneally injected mice mitomycin C, which reduces cell proliferation. We examined whether IMQ and mitomycin C cause changes in the distribution and appearance of ZO‐1. Human samples and mouse pharmacological models revealed that slower epithelial turnover/proliferation led to the confinement of ZO‐1 to the uppermost part of squamous epithelia. In contrast, ZO‐1 was widely distributed under conditions of faster cell turnover/proliferation. Cell culture experiments and mathematical modelling corroborated these ZO‐1 distribution patterns. These findings demonstrate that ZO‐1 distribution is affected by epithelial cell dynamics.

Funder

Core Research for Evolutional Science and Technology

Nakatomi Foundation

Mochida Memorial Foundation for Medical and Pharmaceutical Research

Publisher

Wiley

Subject

Cell Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3