Spontaneous enteric nervous system activity generates contractile patterns prior to maturation of gastrointestinal motility

Author:

Dershowitz Lori B.12,Bueno Garcia Hassler3,Perley Andrew S.3,Coleman Todd P.23,Kaltschmidt Julia A.12

Affiliation:

1. Department of Neurosurgery Stanford University School of Medicine Stanford California USA

2. Wu Tsai Neurosciences Institute Stanford University Stanford California USA

3. Department of Bioengineering Stanford University Stanford California USA

Abstract

AbstractBackgroundSpontaneous neuronal network activity is essential to the functional maturation of central and peripheral circuits, yet whether this is a feature of enteric nervous system development has yet to be established. Although enteric neurons are known exhibit electrophysiological properties early in embryonic development, no connection has been drawn between this neuronal activity and the development of gastrointestinal (GI) motility patterns.MethodsWe use ex vivo GI motility assays with newly developed unbiased computational analyses to identify GI motility patterns across mouse embryonic development.Key ResultsWe find a previously unknown pattern of neurogenic contractions termed “clustered ripples” that arises spontaneously at embryonic day 16.5, an age earlier than any identified mature GI motility patterns. We further show that these contractions are driven by nicotinic cholinergic signaling.Conclusions & InferencesClustered ripples are neurogenic contractile activity that arise from spontaneous ENS activity and precede all known forms of neurogenic GI motility. This earliest motility pattern requires nicotinic cholinergic signaling, which may inform pharmacology for enhancing GI motility in preterm infants.

Funder

Wu Tsai Neurosciences Institute, Stanford University

National Institute of Diabetes and Digestive and Kidney Diseases

Shurl and Kay Curci Foundation

Firmenich

Stanford Maternal and Child Health Research Institute

National Institutes of Health

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3