Dermatopathological features and successful treatment with topical antioxidant for ichthyosiform lesions in Mitchell syndrome caused by an ACOX1 variant

Author:

Gong Zhuoqing12,Yang Sai1,Ling Shiqi1,Wang Huijun1,Xu Xiukuan3,Lin Zhimiao1ORCID

Affiliation:

1. Dermatology Hospital Southern Medical University Guangzhou China

2. Department of Dermatology Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, National Clinical Research Center for Skin and Immune Diseases Beijing China

3. Department of Dermatology Zhangzhou Affiliated Hospital of Fujian Medical University Zhangzhou China

Abstract

AbstractPeroxisomal acyl‐CoA oxidase 1 (ACOX1), is a peroxisomal enzyme that catalyzes β‐oxidation of very‐long‐chain fatty acids (VLCFA). The gain‐of‐function variant p.Asn237Ser in ACOX1 has been shown to cause Mitchell syndrome (MITCH), a neurodegenerative disorder characterized by episodic demyelination, hearing loss, and polyneuropathy, through the overproduction of hydrogen peroxide. Only eight cases of MITCH have been reported. While all these patients experienced cutaneous abnormalities, detailed skin features and potential treatment have not been documented. Herein, we report two MITCH patients who harbored a de novo heterozygous variant p.Asn237Ser in ACOX1 and experienced progressive ichthyosiform erythroderma. Skin histopathology revealed hyperkeratosis and parakeratosis with focal hypogranulosis as well as dyskeratotic keratinocytes. Lipid accumulation in the epidermis was observed using Oil Red O staining. Both patients exhibited a remarkable response to treatment with the topical antioxidant N‐acetylcysteine (NAC), with Patient 1 achieving complete recovery after 3 months of consistent treatment. This study provides the first comprehensive description of the clinicopathological characteristics and effective treatment of skin lesions in MITCH patients. The successful treatment with topical NAC suggests excessive reactive oxygen species might play a significant role in the pathogenesis of skin lesions in MITCH.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3