An empirical hybridized Siamese network using hypercube natural aggregation algorithm for handling imbalance data learning

Author:

Rout Subhashree1,Mallick Pradeep Kumar1,Reddy Annapareddy V. N.2,Alharbi Meshal3,Alkhayyat Ahmed4

Affiliation:

1. School of Computer Engineering Kalinga Institute of Industial Technology (KIIT) deemed to be University Odisha India

2. Department of IT Lakireddy Bali Reddy College of Engineering Mylavaram India

3. Department of Computer Science College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University Alkharj Saudi Arabia

4. Department of Computer Technical Engineering, College of Technical Engineering Islamic University Najaf Iraq

Abstract

AbstractDealing with imbalanced data is a common challenge in machine learning, where one class has significantly fewer examples than another. Successfully addressing this challenge requires careful consideration of the data, algorithm, and evaluation metrics to ensure that the model accurately predicts the minority class. In this study, we present a hybrid approach called Siamese‐HYNAA, which combines a Siamese network and a population‐based optimizer hypercube natural aggregation algorithm (HYNAA) to generate candidate solutions for augmenting the minority class. We collected 10 imbalanced datasets ranging from 1.81 to 8.78 imbalanced ratios and built solution pairs based on correctly predicted candidate solutions using support vector machine (SVM). We then fed these solutions to the Siamese network, which employs a one‐shot learning approach to improve predictions with fewer candidate solutions. However, we found that SVM predicted only a small number of minority class samples accurately, prompting us to optimize the number of candidate solution pairs using HYNAA to generate more synthetic samples for the Siamese network. We evaluated our proposed strategy against basic SMOTE and our previous work, SMOTE‐PSOEV, using various performance measures, including ROC‐AUC learning curves, sensitivity, specificity, accuracy, Characteristic stability index, balanced accuracy, F1‐score, informedness, markedness, and execution time. Our results indicate that Siamese‐HYNAA generates promising results for imbalanced data.

Publisher

Wiley

Subject

Artificial Intelligence,Computational Theory and Mathematics,Theoretical Computer Science,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3