Affiliation:
1. Institute of Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
Abstract
Abstract
Objectives
This review focuses on real-time analytics of drug dissolution and precipitation testing on a comparatively small scale.
Key findings
Miniaturisation of test equipment is an important trend in pharmaceutics, and several small-scale experiments have been reported for drug dissolution and precipitation testing. Such tests typically employ analytics in real-time. Fibre optic ultraviolet (UV) analytics has become a well-established method in this field. Novel imaging techniques are emerging that use visible or UV light; also promising is Fourier transform infrared imaging based on attenuated total reflection. More information than just a rate constant is obtained from these methods. The early phase of a dissolution process can be assessed and drug precipitation may eventually be observed. Some real-time techniques are particularly well suited to studying drug precipitation during formulation dispersion; for example, turbidity, focused beam reflectance measurement and Raman spectroscopy.
Summary
Small-scale dissolution tests equipped with real-time analytics have become important to screen drug candidates as well as to study prototype formulations in early development. Future approaches are likely to combine different analytical techniques including imaging. Miniaturisation started with mini-vessels or small vials and future assays of dissolution research will probably more often reach the level of parallel well plates and microfluidic channels.
Publisher
Oxford University Press (OUP)
Subject
Pharmaceutical Science,Pharmacology
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献