Does the definition of a novel environment affect the ability to detect cryptic genetic variation?

Author:

Riley Camille L.1ORCID,Oostra Vicencio2,Plaistow Stewart J.1

Affiliation:

1. Department of Evolution, Ecology, and Behaviour, IVES University of Liverpool Liverpool UK

2. School of Biological and Behavioural Sciences Queen Mary University of London London UK

Abstract

Abstract Anthropogenic change exposes populations to environments that have been rare or entirely absent from their evolutionary past. Such novel environments are hypothesized to release cryptic genetic variation, a hidden store of variance that can fuel evolution. However, support for this hypothesis is mixed. One possible reason is a lack of clarity in what is meant by ‘novel environment’, an umbrella term encompassing conditions with potentially contrasting effects on the exposure or concealment of cryptic variation. Here, we use a meta-analysis approach to investigate changes in the total genetic variance of multivariate traits in ancestral versus novel environments. To determine whether the definition of a novel environment could explain the mixed support for a release of cryptic genetic variation, we compared absolute novel environments, those not represented in a population's evolutionary past, to extreme novel environments, those involving frequency or magnitude changes to environments present in a population's ancestry. Despite sufficient statistical power, we detected no broad-scale pattern of increased genetic variance in novel environments, and finding the type of novel environment did not explain any significant variation in effect sizes. When effect sizes were partitioned by experimental design, we found increased genetic variation in studies based on broad-sense measures of variance, and decreased variation in narrow-sense studies, in support of previous research. Therefore, the source of genetic variance, not the definition of a novel environment, was key to understanding environment-dependant genetic variation, highlighting non-additive genetic variance as an important component of cryptic genetic variation and avenue for future research. Abstract In this graphical abstract, a flow chart on the left outlines the criteria used to classify novel environments. On the right, two forest plots are presented: one comparing effect sizes (standardized mean difference in total genetic variance, SDV) between extreme and absolute novel environments, and the other comparing effect sizes between broad-sense and narrow-sense study designs.

Funder

Natural Environment Research Council ACCE DTP

Publisher

Oxford University Press (OUP)

Subject

Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3