Affiliation:
1. Rotman School of Management University of Toronto and NBER Toronto Ontario Canada
Abstract
AbstractAnalyses of artificial intelligence (AI) adoption focus on its adoption at the individual task level. What has received significantly less attention is how AI adoption is shaped by the fact that organizations are composed of many interacting tasks. AI adoption may, therefore, require system‐wide change, which is both a constraint and an opportunity. We provide the first formal analysis where multiple tasks may be part of an interdependent system. We find that reliance on AI, a prediction tool, increases decision variation, which, in turn, raises challenges if decisions across the organization interact. Reducing inter‐dependencies between decisions softens that impact and can facilitate AI adoption. However, it does this at the expense of synergies. By contrast, when there are mechanisms for inter‐decision coordination, AI adoption is enhanced when there are more inter‐dependencies. Consequently, we show that there are important cases where AI adoption will be enhanced when it can be adopted beyond tasks but as part of a designed organizational system.
Subject
Management of Technology and Innovation,Strategy and Management,Economics and Econometrics,General Business, Management and Accounting,General Medicine
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献