Affiliation:
1. Department of Neurology Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Disease Beijing China
Abstract
AbstractThe use of machine learning (ML) in predicting disease prognosis has increased, and researchers have adopted different methods for variable selection to optimize early screening for AIS to determine its prognosis as soon as possible. We aimed to improve the understanding of the predictors of poor functional outcome at three months after discharge in AIS patients treated with intravenous thrombolysis and to construct a highly effective prognostic model to improve prediction accuracy. And four ML methods (random forest, support vector machine, naive Bayesian, and logistic regression) were used to screen and recombine the features for construction of an ML prognostic model. A total of 352 patients that had experienced AIS and had been treated with intravenous thrombolysis were recruited. The variables included in the model were NIHSS on admission, age, white blood cell count, percentage of neutrophils and triglyceride after thrombolysis, tirofiban, early neurological deterioration, early neurological improvement, and BP at each time point or period. The model's area under the curve for predicting 30‐day modified Rankin scale was 0.790 with random forest, 0.542 with support vector machine, 0.411 with naive Bayesian, and 0.661 with logistic regression. The random forest model was shown to accurately evaluate the prognosis of AIS patients treated with intravenous thrombolysis, and therefore they may be helpful for accurate and personalized secondary prevention. The model offers improved prediction accuracy that may reduce rates of misdiagnosis and missed diagnosis in patients with AIS.
Subject
Cardiology and Cardiovascular Medicine,Endocrinology, Diabetes and Metabolism,Internal Medicine
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献