Serotonergic transmission plays differentiated roles in the rapid and sustained antidepressant‐like effects of ketamine

Author:

Yin Yong‐Yu1ORCID,Yan Jiao‐Zhao2ORCID,Wei Qian‐Qian3,Sun Si‐Rui4,Ding Yu‐Qiang5,Zhang Li‐Ming1ORCID,Li Yun‐Feng12

Affiliation:

1. Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures Beijing Key Laboratory of Neuropsychopharmacology Beijing China

2. Beijing Institute of Basic Medical Sciences Beijing China

3. School of Medicine Nantong University Nantong China

4. Beijing Ditan Hospital, Capital Medical University Beijing China

5. Department of Laboratory Animal Science Fudan University Shanghai China

Abstract

AbstractBackground and PurposeThe emerging antidepressant effects of ketamine have inspired tremendous interest in its underlying neurobiological mechanisms, although the involvement of 5‐HT in the antidepressant effects of ketamine remains unclear.Experimental approachThe chronic restraint stress procedure was performed to induce depression‐like behaviours in mice. OFT, FST, TST, and NSFT tests were used to evaluate the antidepressant‐like effects of ketamine. Tph2 knockout or depletion of 5‐HT by PCPA and 5,7‐DHT were used to manipulate the brain 5‐HT system. ELISA and fibre photometry recordings were used to measure extracellular 5‐HT levels in the brain.Key Results60 min after injection, ketamine (10 mg·kg−1, i.p.) produced rapid antidepressant‐like effects and increased brain 5‐HT levels. After 24 h, ketamine significantly reduced immobility time in TST and FST tests and increased brain 5‐HT levels, as measured by ELISA and fibre photometry recordings. The sustained (24 h) but not rapid (60 min) antidepressant‐like effects of ketamine were abrogated by PCPA and 5,7‐DHT, or by Tph2 knockout. Importantly, NBQX (10 mg·kg−1, i.p.), an AMPA receptor antagonist, significantly inhibited the effect of ketamine on brain 5‐HT levels and abolished the sustained antidepressant‐like effects of ketamine in naïve or CRS‐treated mice.Conclusion and ImplicationsThis study confirms the requirement of serotonergic neurotransmission for the sustained antidepressant‐like effects of ketamine, which appears to involve AMPA receptors, and provides avenues to search for antidepressant pharmacological targets.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3