Long‐term monitoring of cycles in Clethrionomys rutilus in the Yukon boreal forest

Author:

KREBS Charles J.1,KENNEY Alice J.1,GILBERT B. Scott2,BOONSTRA Rudy3

Affiliation:

1. Department of Zoology University of British Columbia Vancouver British Columbia Canada

2. Renewable Resources Management Program Yukon University Whitehorse Yukon Canada

3. Department of Biological Sciences University of Toronto Scarborough Toronto Ontario Canada

Abstract

AbstractBaseline studies of small rodent populations in undisturbed ecosystems are rare. We report here 50 years of monitoring and experimentation in Yukon of a dominant rodent species in the North American boreal forest, the red‐backed vole Clethrionomys rutilus. These voles breed in summer, weigh 20–25 g, and reach a maximum density of 20 to 25 per ha. Their populations have shown consistent 3–4‐year cycles for the last 50 years with the only change being that peak densities averaged 8/ha until 2000 and 18/ha since that year. During the last 25 years, we have measured food resources, predator numbers, and winter weather, and for 1‐year social interactions, to estimate their contribution to changes in the rate of summer increase and the rate of overwinter decline. All these potential limiting factors could contribute to changes in density, and we measured their relative contributions statistically with multiple regressions. The rate of winter decline in density was related to both food supply and winter severity. The rate of summer increase was related to summer berry crops and white spruce cone production. No measure of predator numbers was related to winter or summer changes in vole abundance. There was a large signal of climate change effects in these populations. There is no density dependence in summer population growth and only a weak one in winter population declines. None of our results provide a clear understanding of what generates 3–4‐year cycles in these voles, and the major missing piece may be an understanding of social interactions at high density.

Publisher

Wiley

Subject

Animal Science and Zoology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3