The introduced Arapaima gigas in the Bolivian Amazon: Trophic position and isotopic niche overlap with native species

Author:

Rejas Danny12ORCID,Oberdorff Thierry3,Declerck Steven A. J.45,Winder Monika2

Affiliation:

1. Unidad de Limnología y Recursos Acuáticos Universidad Mayor de San Simón Cochabamba Bolivia

2. Department of Ecology, Environment and Plant Sciences Stockholm University Stockholm Sweden

3. UMR EDB (Laboratoire Évolution et Diversité Biologique), CNRS5174, IRD253, UPS Toulouse France

4. Department of Aquatic Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands

5. Laboratory of Aquatic Ecology, Evolution and Conservation KU Leuven Leuven Belgium

Abstract

AbstractNon‐native fish species may generate major ecological impacts on native assemblages. This study aims to assess the potential impact of the introduced Arapaima gigas on native fish assemblages in two oxbow lakes of the Bolivian Amazon. Stable isotope data were used to determine trophic position (TP) and isotopic niche overlap, to evaluate potential predation and competition interactions, respectively. Results suggest that A. gigas is more an omnivore than a top predator, as often claimed. Arapaima gigas occupied an intermediate TP between detritivore/herbivore and piscivore fish species and showed broader isotopic niche compared to most native species analysed. The isotopic niche of A. gigas significantly overlapped with most native fish species in one lake (i.e. Lake Mentiroso), while there was low niche overlap in the second (i.e. Lake Miraflores). Given its omnivorous tendencies, the predation impact of A. gigas on other fish species is likely less than currently claimed and likely varies with the food web structure of the ecosystem. More precise data on resource availability and use are necessary to infer whether niche overlap will have negative impacts on native fish species through potential competitive interactions. Increasing our understanding on the processes generating impact of these introductions on resident communities through food web ecology will pave the way for better resource management and conservation efforts.

Funder

Styrelsen för Internationellt Utvecklingssamarbete

Publisher

Wiley

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3