Origin of strong piezoelectric enhancement in bismuth titanate‐ferrite for high‐temperature applications

Author:

Wang Qian1ORCID,Liang En‐Meng1,Wang Chun‐Ming12ORCID

Affiliation:

1. School of Physics State Key Laboratory of Crystal Materials Shandong University Jinan Shandong P. R. China

2. Center for Optics Research and Engineering (CORE) Key Laboratory of Laser and Infrared System of Ministry of Education Shandong University Qingdao Shandong P. R. China

Abstract

AbstractAdvancing the development of high‐temperature piezoelectric devices requires high‐performance piezoelectric materials with high Curie temperature, where charge signals can be efficiently collected at elevated temperatures. Recent investigations indicate that bismuth titanate‐ferrite (Bi5Ti3FeO15) is a good high‐temperature piezoelectric material because of its high Curie temperature (TC > 760°C). However, the piezoelectric performance of Bi5Ti3FeO15‐based compounds has not been extensively studied because of their extremely poor piezoelectric performance and low direct current electrical resistivity at elevated temperatures. Herein, we reported the strong piezoelectric performance enhancement in Bi5Ti3FeO15, with the nominal compositions of Bi5‐xEuxTi3FeO15 (BTF‐100xEu). X‐ray diffraction Rietveld refinements and Raman spectra reveal an enhanced lattice distortion in europium‐substituted Bi5Ti3FeO15, which is mainly dominated by rotation distortion. The increased domain wall density that detected by out‐of‐plane piezoelectric force microscopy is in favor of domain wall movement and polarization reversal. Both of the enhanced lattice distortion and the increased domain wall density contribute to the piezoelectric enhancement in Bi5Ti3FeO15, as a result, the optimal composition of BTF‐8Eu exhibits a large piezoelectric constant d33 of 24 pC/N, three times higher than that of Bi5Ti3FeO15. Importantly, BTF‐8Eu exhibits high TC of 782°C, excellent in‐situ piezoelectric response (>94% that of the initial value at room temperature), and stable electromechanical coupling properties up to 400°C. This work reveals the origin of strong piezoelectric enhancement in europium‐substituted Bi5Ti3FeO15 results from the intrinsic contribution of structure distortion and the extrinsic contribution of ferroelectric domain.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3