Inner ear morphology in wild versus laboratory house mice

Author:

Renaud Sabrina1ORCID,Amar Léa1,Chevret Pascale1ORCID,Romestaing Caroline2ORCID,Quéré Jean‐Pierre3,Régis Corinne1,Lebrun Renaud4ORCID

Affiliation:

1. Laboratoire de Biométrie et Biologie Evolutive (LBBE), UMR 5558, CNRS, Université Claude Bernard Lyon 1 Université de Lyon Villeurbanne France

2. Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), UMR 5023, CNRS, ENTPE Université Claude Bernard Lyon 1, Université de Lyon Villeurbanne France

3. Centre de Biologie et Gestion des Populations (INRA/IRD/Cirad/Montpellier SupAgro) Campus International de Baillarguet Montferrier‐sur‐Lez Cedex France

4. Institut des Sciences de l'Évolution (ISE‐M), UMR 5554, CNRS/UM/IRD/EPHE, Université de Montpellier Montpellier France

Abstract

AbstractThe semicircular canals of the inner ear are involved in balance and velocity control. Being crucial to ensure efficient mobility, their morphology exhibits an evolutionary conservatism attributed to stabilizing selection. Release of selection in slow‐moving animals has been argued to lead to morphological divergence and increased inter‐individual variation. In its natural habitat, the house mouse Mus musculus moves in a tridimensional space where efficient balance is required. In contrast, laboratory mice in standard cages are severely restricted in their ability to move, which possibly reduces selection on the inner ear morphology. This effect was tested by comparing four groups of mice: several populations of wild mice trapped in commensal habitats in France; their second‐generation laboratory offspring, to assess plastic effects related to breeding conditions; a standard laboratory strain (Swiss) that evolved for many generations in a regime of mobility reduction; and hybrids between wild offspring and Swiss mice. The morphology of the semicircular canals was quantified using a set of 3D landmarks and semi‐landmarks analyzed using geometric morphometric protocols. Levels of inter‐population, inter‐individual (disparity) and intra‐individual (asymmetry) variation were compared. All wild mice shared a similar inner ear morphology, in contrast to the important divergence of the Swiss strain. The release of selection in the laboratory strain obviously allowed for an important and rapid drift in the otherwise conserved structure. Shared traits between the inner ear of the lab strain and domestic pigs suggested a common response to mobility reduction in captivity. The lab‐bred offspring of wild mice also differed from their wild relatives, suggesting plastic response related to maternal locomotory behavior, since inner ear morphology matures before birth in mammals. The signature observed in lab‐bred wild mice and the lab strain was however not congruent, suggesting that plasticity did not participate to the divergence of the laboratory strain. However, contrary to the expectation, wild mice displayed slightly higher levels of inter‐individual variation than laboratory mice, possibly due to the higher levels of genetic variance within and among wild populations compared to the lab strain. Differences in fluctuating asymmetry levels were detected, with the laboratory strain occasionally displaying higher asymmetry scores than its wild relatives. This suggests that there may indeed be a release of selection and/or a decrease in developmental stability in the laboratory strain.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3