Sparse sensing to dense assessment: Incorporating spatial autocorrelation for assessing flood impacts

Author:

Chen Yudi1,Ji Wenying2

Affiliation:

1. College of Economics and Management Nanjing University of Aeronautics and Astronautics Nanjing China

2. Department of Civil, Environmental, and Infrastructure Engineering George Mason University Fairfax Virginia USA

Abstract

AbstractA rapid and comprehensive assessment of flood impacts is critical to assist emergency managers in conducting effective relief operations. With advances in information technologies, various types of sensors have been widely used to assess flood impacts promptly as they are capable of providing rapid flood impact information. However, sensor‐driven approaches are limited in the provision of a comprehensive impact assessment as sensors are often sparsely distributed. In this research, the authors integrate the sparse flood impact information obtained from sensors and the spatial autocorrelation of flood‐impacted areas, in order to achieve a rapid and comprehensive flood impact assessment. To achieve such a purpose, a systematic approach is proposed to (1) extract flood impact information from sparsely distributed sensors; (2) model the spatial autocorrelation of flood‐impacted areas based on flood evolution and geography principles; (3) learn the parameters of the spatial autocorrelation model through a gradient descent method; (4) infer the flood impacts of sensor‐uncovered areas based on the sparsely sensed impacts and the modeled spatial autocorrelation. To illustrate the proposed approach, we studied flood impacts on Highways in Houston, Texas during Hurricane Harvey. Results show that the spatial autocorrelation model presents a decent generalization capability in inferring the probability of neighboring highway blocks having the same flood impacts. Compared to purely sensor‐driven approaches, the proposed approach is capable of greatly extending the coverage of flood impact assessment while maintaining the nearly same accuracy.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3